
Clause Identification using
Entropy Guided Transformation Learning

Eraldo R. Fernandes1,2, Bernardo A. Pires1,
Cı́cero N. dos Santos1,3, Ruy L. Milidiú1

1 Departamento de Informática
Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio)

Rio de Janeiro, Brazil

2Laboratório de Automação
Instituto Federal de Educação, Ciência e Tecnologia de Goiás (IFG)

Jataı́, Brazil

3Mestrado em Informática Aplicada - MIA
Universidade de Fortaleza - UNIFOR

Fortaleza, Brazil

{efernandes,bpires,milidiu}@inf.puc-rio.br, cnogueira@unifor.br

Abstract. Entropy Guided Transformation Learning (ETL) is a machine learn-
ing strategy that extends Transformation Based Learning by providing auto-
matic template generation. In this work, we propose an ETL approach to
the clause identification task. We use the English language corpus of the
CoNLL’2001 shared task. The achieved performance is not competitive yet,
since the Fβ=1 of the ETL based system is 80.55, whereas the state-of-the-art
system performance is 85.03. Nevertheless, our modeling strategy is very sim-
ple, when compared to the state-of-the-art approaches. These first findings indi-
cate that the ETL approach is a promising one for this task. One can enhance its
performance by incorporating problem specific knowledge. Additional features
can be easily introduced in the ETL model.

1. Introduction
Clause identification is a Natural Language Processing task consisting of splitting a sen-
tence into clauses. A clause is defined as a word sequence which contains a subject and
a predicate. Clause identification is a special kind of shallow parsing, like text chunk-
ing [Milidiú et al. 2008]. Nevertheless, it is more difficult than text chunking, since
clauses can have embedded clauses. Clause information is important for several more
elaborated tasks such as full parsing and semantic role labeling.

The state-of-the-art system for clause identification in English texts
[Carreras et al. 2005] is based on an elaborated method and shows a Fβ=1 value of
85.03. It uses perceptrons to filter and rank candidate clauses and dynamic program-
ming to optimize over the candidates combination. When classifying clauses with
embedded clauses, the method explores some features that inform about the internal
clause structures. Some other approaches have been successfully applied to this task.
Boosting-trees-centered models [Carreras et al. 2002, Carreras and Màrquez 2001] show,
respectively, the second and third best results for this task.

In this work, we propose an Entropy Guided Transformation Learning (ETL) sys-
tem for clause identification. ETL [dos Santos and Milidiú 2009] is a machine learning
strategy that generalizes Transformation Based Learning (TBL) [Brill 1995] by automat-
ically solving the TBL bottleneck: the construction of good template sets. ETL uses the
Information Gain measure in order to select the feature combinations that provide good
template sets. First, ETL employs decision tree induction to perform an entropy guided
template generation. Next, it applies the TBL algorithm to learn a set of transformation
rules. ETL is an effective way to eliminate the need of a problem domain expert to build
TBL templates.

Since our approach is corpus-based, we use the English language corpus of the
CoNLL’2001 shared task [Sang and Déjean 2001]. In Table 1, we show the best result
obtained with our system. The achieved performance is not competitive yet, since the
Fβ=1 of the ETL based system is 80.55, whereas the state-of-the-art system performance
is 85.03. Nevertheless, our modeling strategy is very simple, when compared to the state-
of-the-art approaches. These first findings indicate that the ETL approach is a promising
one for this task. One can enhance its performance by incorporating problem specific
knowledge. Additional features can be easily introduced in the ETL model.

Table 1. Clause identification performances on CoNLL’2001 corpus.

System Precision Recall Fβ=1

State-of-the-art 88.17 81.10 85.03
CoNLL’2001 84.82 78.85 81.73

ETL 86.37 75.45 80.55

The remaining of this paper is structured as follows. In Section 2, we describe
the ETL method. In Section 3, we present the ETL modeling for clause identification. In
Section 4, the experimental results are reported and discussed. Finally, in Section 5, we
present our concluding remarks.

2. Entropy Guided Transformation Learning
Entropy Guided Transformation Learning [Milidiú et al. 2008] generalizes Transforma-
tion Based Learning by automatically generating rule templates. ETL employs an en-
tropy guided template generation approach, which uses Information Gain in order to se-
lect the feature combinations that provide good template sets. ETL has been successfully
applied to part-of-speech tagging [dos Santos et al. 2008], phrase chunking, and named
entity recognition [dos Santos and Milidiú 2009, Milidiú et al. 2008], producing results
at least as good as the ones of TBL with handcrafted templates. Several ETL-based lan-
guage processors, for different languages, are freely available on the Web through the
F-EXT-WS1 service [Fernandes et al. 2009]. The ETL algorithm is illustrated in Figure
1 and briefly reviewed in the next two subsections. A detailed description of ETL can be
found in [Milidiú et al. 2008, dos Santos and Milidiú 2009].

2.1. Entropy Guided Template Generation
Information gain, which is based on the data entropy, is a key strategy for feature
selection. The most popular Decision Tree (DT) learning algorithms [Quinlan 1993,

1http://www.learn.inf.puc-rio.br/

Figure 1. Entropy Guided Transformation Learning.

Su and Zhang 2006] implement this strategy. Hence, they provide a quick way to obtain
entropy guided feature selection. In the ETL strategy, we use DT induction algorithms to
automatically generate template sets.

ETL uses a very simple DT decomposition scheme for template generation. The
decomposition process includes a depth-first traversal of the DT. For each visited tree
node, we create a template that combines the features in the path from the root to this
node.

2.2. Transformation Based Learning

In the ETL approach, after the template set is generated, the learning of transformation
rules is done by using the TBL algorithm. The TBL algorithm can be formulated as
follows:

1. The baseline system (BLS) is applied to the training set, in order to obtain an
initial classification;

2. REPEAT
(a) The resulting classification is compared with the correct one and, when-

ever a classification error is found, all the rules that can correct it are gen-
erated by instantiating the templates. Usually, a new rule will correct some
errors, but will also generate some other errors by changing correctly clas-
sified samples;

(b) The rules’ scores are computed. This score is defined as the difference
between the total number of repaired errors and the total number of created
errors.

(c) If there is no rule with a score above a given rule score threshold, STOP
the learning process;

(d) The best scoring rule is selected, stored in the set of learned rules and
applied to the training set;

3. Clause Identification using ETL
In this section, we show our ETL modeling for the clause identification task. We use
the CoNLL’2001 corpus, which was automatically generated from the Wall Street Journal
part of the Penn Treebank [Marcus et al. 1993]. In Figure 2, we present an example of a
sentence from the Penn Treebank divided into clauses by parentheses. The CoNLL’2001

corpus provides three input features for each token: word, POS tag, and chunk tag. These
are not the Peen Treebank golden values. The POS and chunk tags are respectively gen-
erated using Brill’s tagger [Brill 1994] and Sang’s tagger [Sang 2000]. Hence, the perfor-
mance results provide more realistic estimates for the expected behavior on unannotated
datasets.

(Not everyone believes
(that

(the good times are over for shippers)
)
.

)

Figure 2. Sentence from Penn Treebank split into clauses.

We approach the clause identification problem in three steps, as generally adopted
in the CoNLL’2001 shared task. The three steps are: (i) clause start identification; (ii)
clause end identification; and (iii) complete clause identification. We solve these three
problems sequentially. Therefore, we can use the information produced in previous steps
as input to the next ones. First, we use start tags as input for the end classifier. Next, we
use both start and end tags to identify the complete clauses.

3.1. Baseline System
We adopt the simple baseline system proposed in the CoNLL’2001 shared task. This BLS
assigns just one clause for the whole sentence. This system is used in the three steps.

3.2. Clause Boundary Candidates
The first and second steps identify the clause boundary candidates, that is, start and end
tokens. These steps identify the tokens that are good candidates to clause boundaries,
without any concern to consistence among them. We model these two subtasks as token-
classification problems. In Table 2, we illustrate the corpus format through an example.
Observe that each line corresponds to a token. This example corresponds to the sentence
in Figure 2. The Start and End columns in the table respectively indicate the start and end
classifications. In the first step, if a token starts one or more clauses, it must be classified
as S, otherwise, it must be classified as X. Similarly, in the second step, if a token ends
one or more clauses, it must be classified as E, otherwise as X.

3.3. Complete Clause Identification
The last and most difficult step consists of splitting a given sentence into clauses. In the
CoNLL corpus, the complete clauses within a sentence are encoded through a unique
token feature using the following tags: (S* – indicating that the token starts a clause; *S)
– indicating that the token ends a clause; * – representing a token that neither starts nor
ends a clause; and any combinations of the previous to represent tokens that start or end
more than one clause. The Clause column in Table 2 contains the tags that encode the
clauses within the sentence as illustrated in Figure 2.

For the third step, we present two modeling approaches: token classification and
pair classification. These modeling approaches are detailed in the following subsections.

Table 2. CoNLL’2001 corpus format.

Word Start End Clause
Not S X (S*

everyone X X *
believes X X *

that S X (S*
the S X (S*

good X X *
times X X *

are X X *
over X X *

for X X *
shippers X E *S)S)

. X E *S)

3.3.1. ETL-Token

Using a token classification approach, we perform the third step in a straightforward man-
ner with ETL. We train an ETL model to classify each token as *, (S*, *S), or any tag
combination appearing in the Clause column of the training corpus. This approach is
very simple but also limited. We observe that many clauses are tokenwise long. For in-
stance, in the CoNLL training corpus, the fraction of clauses with length longer than 14
tokens is greater than 40%. Even using a window of 27 tokens (the current token plus
the thirteen tokens on each side), when classifying one clause boundary the other one is
not included for 40% of the clauses. We observe that this window size is computationally
prohibitive for the ETL algorithm.

3.3.2. ETL-Pair

In order to capture more clause context information, we try a second modeling approach.
This approach uses the output of the start and end classifiers to create a new corpus. For
each start-end pair of tokens from a given sentence in the original corpus, we generate one
example in the new corpus. Next, we train an ETL model that learns to classify which
pairs of tokens define clause boundaries.

3.4. Derived Features

We use the three input features provided in the CoNLL corpus plus some derived fea-
tures. We derive these additional features in the same fashion as in [Carreras et al. 2002],
although we use just a small subset of the features proposed by these authors.

The selected features inform us about the occurence of relevant elements within
a sentence fragment. The following elements are the relevant ones: verb chunks, start
tokens, and end tokens. We call verb chunks the ones with chunk tag with value verb.
We generate two features for each relevant element: a flag indicating its occurence; and
the number of its occurences within a sentence fragment.

For the Start, End, and ETL-Token classifiers we use the same feature derivation
scheme. For each token we derive twelve features: six for the sentence fragment before
the token; and six for the sentence fragment after it. For the ETL-Pair classifier we use
a different scheme. For each start-end pair of tokens we derive eighteen features: six for
the sentence fragment before the start token; six for the sentence fragment after the end
token; and six for the sentence fragment between the start-end tokens. Observe that a
derived feature is only used when its required information is available.

4. Experiments
We use the corpus provided for the CoNLL’2001 shared task. This corpus was gener-
ated from the Wall Street Journal part of the Penn Treebank [Marcus et al. 1993] and is
divided into three parts: (i) train – containing 8,936 sentences from sections 15 to 18;
(ii) development – containing 2,012 sentences from section 20; and (iii) test – containing
1,671 sentences from section 21.

We use the development dataset for parameter tunning. For both the Start and End
classifiers, we set the window size parameter to 5 and the rule score threshold to 2. For
the ETL-Token classifier we set the window size to 7 and the rule threshold to 4; whereas
for the ETL-Pair classifier the values 9 and 4 are respectively used.

In Table 3, we present the results for the Start and End classifiers in the develop-
ment and test datasets. In this table we also report a comparison between the ETL-Token
and ETL-Pair classifiers, since they are two alternatives to the same classification prob-
lem. The Fβ=1 of the ETL-Pair system shows more than 4 points than the one of the
ETL-Token system in both development and test datasets. We believe this improvement is
due to ETL-Pair use of stronger information about the clause candidates.

Table 3. Results obtained for the ETL classifiers in the development and test
datasets.

Strategy
Development Test

Precision Recall Fβ=1 Precision Recall Fβ=1

Start 94.02 90.86 92.42 92.16 87.81 89.93
End 89.00 88.98 88.99 88.71 88.56 88.63
ETL-Token 82.55 75.88 79.07 80.47 72.28 76.16
ETL-Pair 87.67 78.98 83.10 86.37 75.45 80.55

In Table 4, we rank four competing classifiers: the state-of-the-art system
[Carreras et al. 2005]; the second best system [Carreras et al. 2002]; the best system in
the CoNLL’2001 shared task [Carreras and Màrquez 2001]; and the ETL-Pair system.
Additionally, we report the performance of the BLS used by our ETL classifiers. Our
results so far are getting competitive with the best clause identifiers.

5. Conclusions
In this paper, we present a machine learning based system to the clause identification prob-
lem. Our system uses the machine learning technique called Entropy Guided Transforma-
tion Learning (ETL). We use the English language corpus provided for the CoNLL’2001
shared task. The problem is divided into three steps: (i) clause start identification; (ii)

Table 4. Comparison with state-of-the-art results in the test dataset.
Strategy Precision Recall Fβ=1

[Carreras et al. 2005] 88.17 81.10 85.03
[Carreras et al. 2002] 90.18 78.11 83.71
[Carreras and Màrquez 2001] 84.82 78.85 81.73
ETL-Pair 86.37 75.45 80.55
BLS 98.44 33.88 50.41

clause end identification; and (iii) complete clause identification. We report the perfor-
mance of the proposed system for the three steps. Our modeling strategy is very simple,
when compared to the state-of-the-art approaches. These first findings indicate that the
ETL approach is a promising one for this task.

We plan to improve the start and end classifiers. The state-of-the-art approach
[Carreras et al. 2005] explores some features that inform about the structure of the em-
bedded clauses, when classifying compound clauses. This idea can be introduced in
our approach to improve its perfomance. We plan also to build ensemble models as in
[Carreras et al. 2005], using ETL as the weak learner.

The Floresta Sintá(c)tica project [Freitas et al. 2008] provides a treebank for sev-
eral Portuguese language texts. The Bosque part of the Floresta Sintá(c)tica corpus
has been mannually reviewed and can be used for development of supervised machine
learning approaches. We have generated a Portuguese clause corpus, following the
CoNLL’2001 format, from the Bosque corpus. We are currently working on a clause
identification system using this corpus, achieving some promising preliminary results.

References

Brill, E. (1994). Some advances in transformation-based part of speech tagging. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, pages 722–
727, Seattle, USA.

Brill, E. (1995). Transformation-based error-driven learning and natural language pro-
cessing: a case study in part-of-speech tagging. Computational Linguistics, 21(4):543–
565.

Carreras, X. and Màrquez, L. (2001). Boosting trees for clause splitting. In Proceedings
of Fifth Conference on Computational Natural Language Learning, Toulouse, France.

Carreras, X., Màrquez, L., and Castro, J. (2005). Filtering-ranking perceptron learning
for partial parsing. Machine Learning, 60(1–3):41–71.

Carreras, X., Màrquez, L., Punyakanok, V., and Roth, D. (2002). Learning and inference
for clause identification. In Proceedings of the Thirteenth European Conference on
Machine Learning, pages 35–47.

dos Santos, C. N. and Milidiú, R. L. (2009). Foundations of Computational Intelli-
gence, Volume 1: Learning and Approximation, volume 201 of Studies in Computa-
tional Intelligence, chapter Entropy Guided Transformation Learning, pages 159–184.
Springer.

dos Santos, C. N., Milidiú, R. L., and Renteria, R. P. (2008). Portuguese part-of-speech
tagging using entropy guided transformation learning. In Proceedings of PROPOR
2008, Aveiro, Portugal.

Fernandes, E. R., dos Santos, C. N., and Milidiú, R. L. (2009). Portuguese language
processing service. In Proceedings of the Web in Ibero-America Alternate Track of the
18th World Wide Web Conference, Madrid.

Freitas, C., Rocha, P., and Bick, E. (2008). Floresta Sintá(c)tica: Bigger, thicker and
easier. In Teixeira, A., de Lima, V. L. S., de Oliveira, L. C., and Quaresma, P., editors,
Computational Processing of the Portuguese Language, volume 5190 of Lecture Notes
in Computer Science, pages 216–219. Springer.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated
corpus of english: The penn treebank. Computational Linguistics, 19(2):313–330.

Milidiú, R. L., dos Santos, C. N., and Duarte, J. C. (2008). Phrase chunking using entropy
guided transformation learning. In Proceedings of ACL-08: HLT, pages 647–655,
Columbus, USA. Association for Computational Linguistics.

Milidiú, R. L., dos Santos, C. N., and Duarte, J. C. (2008). Portuguese corpus-based
learning using ETL. Journal of the Brazilian Computer Society, 14(4).

Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, USA.

Sang, E. F. T. K. (2000). Text chunking by system combination. In Proceedings of
Conference on Computational Natural Language Learning, Lisbon, Portugal.

Sang, E. F. T. K. and Déjean, H. (2001). Introduction to the conll-2001 shared task:
Clause identification. In Proceedings of Fifth Conference on Computational Natural
Language Learning, Toulouse, France.

Su, J. and Zhang, H. (2006). A fast decision tree learning algorithm. In Proceedings of
the Twenty-First AAAI Conference on Artificial Intelligence.

