
From Factorial to Quadratic Time Complexity for Sentence
Realization using Nearest Neighbour Algorithm

Karthik Gali, Sriram Venkatapathy, Taraka Rama

1 Language Technologies Research Centre,
IIIT-Hyderabad, Hyderabad, India

{karthikg@students,sriram@research,taraka@students}.iiit.ac.in

Abstract. Sentence Realization is the task of generating a well-formed sentence
from a bag of words. Sentence Realization is a major step in many Natural
Language Processing applications like Machine Translation (MT), Summariza-
tion and Dialogue Systems. In this paper, we explore a graph based Nearest
Neighbour Algorithm for the task of Sentence Realization.

1. Introduction

Sentence Realization is a major step in many Natural Language Processing applications
like Machine Translation (MT), Summarization and DialogueSystems. The task of Sen-
tence Realization involves formation of a well-formed sentence from a bag of lexical
items. These lexical items may be attached syntactically with one another. The level of
syntactic information varies from application to application. Our aim consists of achiev-
ing quality sentence realiser using as much as minimum syntactic information and of
minimal computational complexity. As such our experimentsassume only basic syntactic
information, such as unlabeled dependency relationships between the lexical items.

Graph based algorithms for Natural Language applications such as Pars-
ing [McDonald et al. 2005], Summarization [Mihalcea and Tarau 2005] and Word sense
disambiguation [Mihalcea 2005] have been well explored. For the task of Sentence Re-
alization, graph based algorithms have yet to be explored. This paper is a novel effort in
that direction.

In this paper, we explore the graph based Nearest Neighbour Algorithm1 for the
task of Sentence Realization from a bag of words with dependency constraints. In a
similar work, Gali and Venkatapathy(2009) have suggested syntax based language models
for the task of sentence realization from bag of words. For our case, we adopt their
experimental setup and try to address the limitations of their approach using our approach.

The paper is organised as follows. Section 2 discusses the models given
in [Gali and Venkatapathy 2009]. The details of the experimental setup is given in Sec-
tion 3 and the algorithm itself is described in detail in Section 4. The outcome of our
experiments are presented and discussed in Section 5. We talk about the possible future
directions of the work in Section 6 and conclude in Section 7.

2. Syntax based Language Models

Gali and Venkatapathy(2009) has suggested syntax based language models for the task
of sentence realization. In their approach, they travel theunordered dependency tree(bag

1http://en.wikipedia.org/wiki/Nearestneighbouralgorithm



of words with dependency constraints) in a bottom up fashion. They compute the best
relative order at every node in the unordered dependency tree using five different types
of language models likesentential language model, subtree-type based language mod-
els(STLM), head-word STLM, POS based STLM and head-marked POS based STLM.
The best order obtained at the head of the dependency tree is the sentence realized from
the unordered dependency tree.

Head-marked POS based STLM model performs the best among all. One of the
problems, with this model is that it does a exhaustive searchwhich is in the order ofN !.
In this paper, we present a graph based model of quadratic complexity for finding the
best relative order at every node instead of doing an exhaustive search, as in the case of
head-marked POS based STLM, albeit at the cost of accuracy.

3. Experimental Setup

For the experiments, we use the WSJ portion of the Penn tree bank [Marcus et al. 1993],
using the standard train/development/test splits, viz 39,832 sentences from 2-21 sections,
2416 sentences from section 23 for testing and 1,700 sentences from section 22 for devel-
opment. The input to our sentence realiser are bag of words with dependency constraints
which are automatically extracted from the Penn treebank using head percolation rules
used in [Magerman 1995], which do not contain any order information. We also use
the provided part-of-speech tags in some experiments. The same experimental setup de-
scribed in [Gali and Venkatapathy 2009] is kept in place for comparing our model with
theirs.

4. Nearest Neighbour Algorithm

A major bottleneck of the models presented in [Gali and Venkatapathy 2009] is that their
worst case complexity isO(N !), whereN is the number of nodes in the subtree. In order
to overcome this bottleneck we propose a faster algorithm based on Nearest Neighbour
algorithm. The problem is formulated as follows. We represent the nodes and ”<s>”
which represents the beginning of a phrase as vertices of a graph. Then a directed com-
plete graph is constructed from the above vertices.

A complete directed graph is a simple graph in which every pair of distinct vertices
is connected by an directed edge. The complete directed graph on n vertices hasn∗(n−1)
edges. Every edge in complete directed graph is associated with a scoreScore(x, y)
that maps edge betweenx andy to a real number. These scores are a negative of the
conditional probabilityp(y/x) which is given by−(count(x, y)/count(x)). We take the
negative of the conditional probability in order to apply the algorithm directly. We can
see from the above formulation that the path which visits each vertex exactly once and
has the least score is the required phrase of the subtree. Such a path which visits each
vertex exactly once is called Hamiltonian path. Now, our task of finding the best sentence
is reduced to building a complete directed graph with nodes of subtree as vertices and find
the least costly Hamiltonian path.

But finding the Hamiltonian path is aNP -complete problem i.e., the search space
is N ! for N nodes. But there are some approximate algorithms2 which give the approxi-

2http://en.wikipedia.org/wiki/Approximationalgorithm



mate solution with less computational complexity. The solution might not be always opti-
mal but the primary advantage is the reduction of search space from factorial to quadratic.
One of the familiar approximate algorithm is Nearest Neighbour algorithm.

In Nearest Neighbour Algorithm, we start with<s> node and mark it has visited.
Then we find and visit the lightest edge going from the currentvertex and not visited and
mark it as visited. We continue till all the nodes of the graphare visited which gives us
the Hamiltonian path.

Since there are (N2) possible bigram probabilities, the run time complexity ofthe
Nearest Neighbour algorithm is in the order ofN2. This will decrease the search space and
in turn effect the system output since the best output might not be possibly explored. The
method described takes the local best at each step. So, the output might not be a global
best. In order to get the global best, we storeK-best instead of top one at each stage.
Then in the end when we get theK-best phrases for the subtree. Then we chose the best
phrase having highest global probability. Higher value ofK allows for more phrases to
be considered. Hence the search space for theK-best Nearest Neighbour algorithm will
be in the order ofK ∗ N2.

5. Results

BLEU score [Papineni et al. 2001] used in evaluation of the performance of a MT system
is used to evaluate our system’s performance. We observe from figure 1 that BLEU score
increases at a faster rate upto the value ofK = 10 and stabilises after that.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30

B
LE

U
 s

co
re

K-best

BLEU scores for K-best

Figure 1. Graph showing the BLEU scores of Nearest Neighbour Algorithm for
different values of K

We can see from the figure that forK = 30 the BLEU score achieved for the
standard test set is 0.7968. Gali and Venkatapathy(2009) who does a exhaustive search
of N ! has achieved a BLEU score of 0.8156 on the same test data. The results show that
there is a decrease of 0.0188 BLEU score with the decrease of computational complexity
from N ! to K ∗ N2 (K=30).

6. Future Experiments

In this paper, we have explored the Nearest Nearest Algorithm for finding the Hamiltonian
path in a complete graph. In future, we would like to explore different approximation



algorithms for finding the Hamiltonian path in a complete graph. We would also like to
test our approach for morphologically-rich languages suchas Hindi. Another possible
direction for the future work lies in verifying how the BLEU score is affected for larger
values ofK. We also like to evaluate our system with various other sentence evaluation
measures such as METEOR, WER, PER as a part of our future work.

7. Conclusion

In this paper, we have successfully tested the graph based Nearest Neighbour Algorithm
for the task of Sentence Realization. We have shown that using the graph-based algo-
rithm can reduce the computational complexity fromfactorial to quadratic at the cost of
2% reduction in the overall BLEU score. This method of decreasing the computational
complexity at a very low cost makes our module suitable for employment in practical ap-
plications. We have also checked the importance of storing K-best solutions at each stage
and chose the best sentence with higher global probability at the end. The BLEU score
improved from 0.4513 withK = 1 to 0.7968 withK = 30.

Acknowledgements

We would like to thank all the three anonymous authors for their valuable suggestions
which helped in improving the paper significantly.

References

Gali, K. and Venkatapathy, S. (2009). Sentence Realisationfrom Bag of Words with
dependency constraints. InProceedings of the HLT NAACL 2009 Student Research
Workshop.

Magerman, D. (1995). Statistical decision-tree models forparsing. InProceedings of the
33rd annual meeting on ACL. ACL Morristown, NJ, USA.

Marcus, M., Marcinkiewicz, M., and Santorini, B. (1993). Building a large annotated
corpus of English: the penn treebank.Computational Linguistics, 19(2).

McDonald, R., Pereira, F., Ribarov, K., and Hajic, J. (2005). Non-projective dependency
parsing using spanning tree algorithms. InProceedings of HLT and EMNLP, pages
523–530.

Mihalcea, R. (2005). Unsupervised large-vocabulary word sense disambiguation with
graph-based algorithms for sequence data labeling. InProceedings of the conference
on HLT and EMNLP, pages 411–418. ACL Morristown, NJ, USA.

Mihalcea, R. and Tarau, P. (2005). Multi-document Summarization with iterative graph-
based algorithms. InProceedings of the First International Conference on Intelligent
Analysis Methods and Tools (IA 2005), McLean, VA.

Papineni, K., Roukos, S., Ward, T., and Zhu, W. (2001). BLEU:a Method for Automatic
Evaluation of Machine Translation.Proceedings of the 40th Annual Meeting on ACL.


