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Abstract. We have created a human-annotated, multi-event, cross-lingual cor-
pus of equivalent summaries in Spanish and English to investigate cross-lingual
information extraction. The corpus contains, in addition to pairs of equivalent
non-translated summaries, automatic translations of each summary produced
using an available translation tool. We have developed trainable information
extraction systems per language and have applied them to both original sum-
maries and their automatic translations obtaining encouraging results.

Resumo. Apresentamos um estudo de extração de informações de um corpus
bilı́ngüe paralelo em espanhol e inglês. O corpus está formado por pares de
resumos curtos de eventos em três domı́nios de aplicação. Temos desenvolvido
sistemas de extração de informaçoes para as duas lı́nguas estudadas e avali-
ado o desempenho do sistema em varias experiências tanto monolı́ngües como
translı́ngües. Apresentamos uma análise dos resultados obtidos.

1. Introduction
Creating knowledge repositories in specific application domains and populating them
from textual sources would be an impossible task without the appropriate information
extraction tools. In this paper we address cross-lingual information extraction, which
consists on developing an information extraction system for a given source language and
applying it to another target language. Such tool would be appropriate for extracting infor-
mation which is only available in the target language but for which only limited language
processing tools exist. We address the language pair Spanish/English for which, and to
the best of our knowledge, there has been no past research. Spanish is widely used with
over 500 million speakers worldwide, it is the third Internet language in terms of content,
and it is the official language of 21 nations in addition to be spoken in many non-Spanish
speaking countries. It it is therefore particularly important to develop information extrac-
tion technology for Spanish. The documents we have dealt with in this research are event
summaries in Spanish and English which provide in a condensed form information about
specific events. There are various reasons to work with summaries:

• they are easily found on the Web and on document collections. For example, it
would be difficult to ignore the number of summaries available in public sources
such as Wikipedia or in background pieces of news about particular events which
frequently include condensed descriptions, i.e., summaries, of past similar events.
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• they contain the key pieces of information of an event but in natural language
instead of in tabular form;

• they still are complex textual units which deserve special attention from the scien-
tific community and, finally,

• non-extractive summaries such as those we present in this paper offer opportuni-
ties for research into abstractive summary generation.

In order to carry out this research we have created a comparable corpus of avail-
able summaries in Spanish and English (i.e., the clean data). We have also enriched the
corpus with automatic translations (i.e., the noisy data) and have manually annotated both
the clean and noisy data to create a valuable resource for the scientific community. The
automatic translations were produced using the Google Translate software available on
the Web (http://translate.google.com). In this research we test the perfor-
mance of trainable information extraction systems in various conditions including: train-
ing/testing in clean data, training/testing in noisy data, and training in clean data and
testing in noisy data. Because summaries by definition provide key information about a
domain, they offer a great potential for the extraction of domain specific information and
for the creation of structured sources of knowledge (e.g., ontologies or knowledge repos-
itories). Also because summaries are concise, they offer increased advantages compared
to extraction of information from full document collections: knowing that the summary
contains just the key elements of an event certainly could reduce extraction mistakes.

The rest of this paper is structured as follows: in Section 2 we describe related
work and then, in Section 3 we describe the data set created for the study of cross-lingual
extraction. After that, in Section 4 we describe the automatic tools used to process doc-
uments. Finally, Section 5 reports experiments and discusses the results and Section 7
closes the paper.

2. Related Work
Information extraction is the mapping of natural language texts (e.g. news articles, web
pages, e-mails) into predefined structured representations or templates [Grishman 1997].
Information extraction is a complex task carried out by human analysts on a daily ba-
sis. Because it is very time-consuming and labour-intensive, there has been much re-
search over the last 20 years to automate the process. The field of information extraction
has been fuelled by two major US international evaluations efforts. From 1987 until
1997 the Message Understanding Conferences (MUC) [Grishman and Sundheim 1996,
Cowie and Lehnert 1996] concentrated on template-based information extraction. After
MUC, the interest was changed to content extraction in the ACE evaluations [ACE 2004]
where semantics more than linguistic analysis was the focus. There was also inter-
est on systems able to easily adapt to new languages and tasks. In recent years there
has been an increasing interest in multilingual as well as cross-lingual information ex-
traction with a number of events organized on the subject [Poibeau and Saggion 2007,
Poibeau et al. 2008]. Using rule-based information extraction in three different languages
and robust graph-based event linking, the MUSING project [Saggion et al. 2003] demon-
strated how extraction could be used to improve multimedia indexing in multiple lan-
guages. Related to this is work on cross-lingual retrieval: [Hakkani-Tür et al. 2007] use
an information extraction system in English as a filtering step to improve retrieval of Chi-
nese documents. As a key technology for information extraction is named entity recogni-
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tion, multilingual named entity recognition is also relevant. [Steinberger et al. 2007] use
extensive resources and rule-based systems developed through bootstrapping processes to
identify and match names in over 8 languages.
Related to the work presented here is also research related to the creation of corpora of
summaries for natural language processing applications. We have identified the Summ-
Bank corpus [Saggion et al. 2002] created for the study of multi-lingual summarization in
Chinese and English which is suitable for cross-lingual summarization but not for infor-
mation extraction tasks. The SumTime-Meteo Corpus [Reiter and Sripada 2002] provides
weather summaries in English from numerical data and are potentially useful in data to
text generation applicationsn and might be suitable for summary-to-template applications.

3. Data Set Creation and Annotation

In its current state, the dataset we work with is a corpus of equivalent summaries in
Spanish and English in three different domains: aviation accidents, rail accidents, and
earthquakes. Further domains will be incorporated in the future for researchers interested
in evaluating the robustness and adaptation capabilities of different natural language pro-
cessing techniques. In order to collect the summaries, a keyword search strategy was used
to search for documents on the Internet using Google Search. Keywords per domain were
defined and used to select a set of Web pages in Spanish, for example the keywords “lista
de terremotos” (“list of earthquakes”) could be used to find out pages on earthquakes. The
pages returned by the search engine were examined to verify if they actually contained an
event summary and in that case a document was created for the summary (it is usual to
find multiple summaries in a single Web page). The documents were given names indi-
cating the type of event and the date of the event/incident. A set of around 50 summaries
per domain in Spanish were collected in this manner. After this, for each event summary
originally in Spanish the Internet was searched for an equivalent English summary (not
a translation) using keywords in English, manually derived from the Spanish summary.
For example if an earthquake event mentioned a particular date and intensity, then those
elements were used as keywords. Following this procedure we found equivalent English
summaries for most of the Spanish ones.
For each domain a set of semantic components were identified based on intuition and on
the actual data observed in the set of summaries. Some examples of semantic information
are as follows:

• For aviation accidents: the airline, the cause of the accident, the date of the acci-
dent, the destination, the flight number, the origin of the flight, etc.

• For railway accidents: the cause of the accident, its date, its destination, its origin,
the number of passenger, the number of survivors, etc.

• For earthquakes: the city affected, the country affected, its date, its epicentre, the
number of fatalities, etc.

Corpus examples (pairs of summaries in the two languages) for the aviation do-
main are shown in Table 1. In order to manually annotate the summaries with semantic
information, we have used the GATE annotation framework [Maynard et al. 2002]. To
facilitate the annotation process an annotation schema was used so that in the GATE
Graphical User Interface the target text span to be annotated can be selected, and anno-
tated with one valid category from the annotation schema. One annotator was in charge
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Aviation Accident
(A1) 2009 4 de agosto: El vuelo 622 de Bangkok Airways, se disponı́a a enlazar dos de
los más importantes centros turı́sticos: Krabi y Koh Samui. Pero al aterrizar, se sale de
pista y se estrella contra la torre de control, y se incendia. Fallece el piloto, y 41 personas
resultan heridas. El aparato, un ATR-72, tenı́a poco más de ocho años, y ya habı́a operado
anteriormente para Bangkok Airways. (Spanish original)

(A2) 2009 August 4 Bangkok Airways Flight 266, an ATR 72-200 carrying 68 passengers
crashes in severe weather on landing at Samui airport in the resort island of Ko Samui in
Thailand, resulting in at least 1 confirmed death and 37 injuries. (English original)

(A3) 2009 August 4: Flight 622 from Bangkok Airways, was about to link two of the
most important tourist centers, Krabi and Koh Samui. But upon landing, exit the track
and crashes into the control tower and fire. Pilot dies, and 41 people injured. The device,
an ATR-72, had just over eight years and had previously operated for Bangkok Airways.
(English translation of A1)

(A4) 2009 04 de agosto - Bangkok Airways Vuelo 266, un ATR 72-200 llevar a 68 pasajeros
se estrella en el mal tiempo al aterrizar en el aeropuerto de Samui, en la turı́stica isla de
Ko Samui en Tailandia, con al menos una muerte confirmada y lesiones 37. (Spanish
translation of A2)

Table 1. Sample of the parallel corpus; Spanish and English parallel texts (A1,
A2) and their Google Translate translations (A3, A4).

of the annotations and a curator controlled the annotations for any inconsistency. Note
that because we are dealing with short texts, the annotation process is less complex than
that of annotating a full event report. Figure 1 shows the two components of a corpus pair
annotated in the annotation tool. More detailed information about the corpus is given in
[Saggion and Szasz 2011a].

4. Text Analysis Components
All summaries were analysed by automatic processes as described below:

The English summaries were linguistically analysed by the default text analysis
and named entity recogniser distributed with the GATE system. Although this is a system
not trained on the type of data we are dealing with, we needed an off-the-shelf system
to come up with basic linguistic information such as parts-of-speech and general named
entities. The components we have used from the GATE system are a sentence identi-
fication program, tokenizer, parts-of-speech tagger, rule-based morphological analysis,
dictionary lookup, and named entity recognition and classification. The Spanish sum-
maries were linguistically analysed with two components: an adaption of the TreeTagger
software [Schmid 1995] so that it can be executed from the GATE system and our own
named entity recognizer. TreeTagger provides tokenisation, parts-of-speech tags for each
word, and morphological (lemma information) analysis for Spanish (the default trained
system was used). Named entity recognition is carried out using a machine learning
component developed using Support Vector Machines trained over data from the CoNLL
evaluation program [Tjong Kim Sang and De Meulder 2002]. The CoNLL 2002 Spanish
dataset which provides information on named entities such as Location, Organization,
Person, and Miscellaneous was analyzed using parts-of-speech tagging and morphologi-
cal analysis from the TreeTagger. The named entity recogniser is based on SVMs classi-
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Figure 1. Spanish and English summaries manually annotated with semantic
information pertaining to aviation accidents (pair corresponding to an accident
on 1 January 2007).

fication [Li et al. 2004] trained over word roots, parts-of-speech, and orthographic infor-
mation using context windows of 5 words around the token to be classified. It achieves
an F-score performance of 68% in cross-validation experiments.

5. Information Extraction System
To develop the Spanish and English information extraction systems we used as machine
learning algorithm a Support Vector Machines (SVMs) implementation integrated in the
GATE framework [Li et al. 2004]. The SVMs treat the extraction problem as one of
chunk-learning, where each token in the document has to be classified into a set of poten-
tial begin or end labels pertaining to the different information types defined in the learning
task. Taking the aviation domain as an example, the types of information (or concepts)
we are interested in identifying in the summaries are: the Airline, and the TypeOfAircraft
among others. In the chunk-learning tasks this is reduced to identifying which tokens have
labels Begin-Airline, End-Airline, Begin-TypeOfAircraft, End-TypeOfAircraft. Given a set
of tokens with their associated labels and their context, the SVMs is trained and used to
classify unseen tokens. After “begin” and “end” tokens have been identified for a concept
T , the whole concept can be recovered as the shortest span staring at a begin annotation
of type T and ending at an end annotation of type T . The SVMs needs two probabilities
to be defined for the token classification problem: the probability that a particular token is
entity boundary, and the probability that a given sequence of tokens is an entity. These two
probabilities are set experimentally through training-testing cycles. In SVMs classifica-
tion, two different approaches are considered: (i) in a “one vs all” classification approach
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each class (e.g., Airline) is compared to all other classes therefore creating different clas-
sifiers for each given label; (ii) in a “one vs another” classification approach a given class
(e.g., Airline) is compared against each other class (e.g., TypeOfAirchaft) therefore cre-
ating a classification problem for each pair of classes. Basic linguistic features were used
to train Spanish and English extraction systems:

• The Spanish system uses for each token to be classified a context window of five
tokens. Features extracted from each token in the context are: orthographic in-
formation (e.g., word capitalization), root information, parts-of-speech tags and
named entity type of each token;

• The English system uses for each token to be classified a context window of five
tokens. Features extracted from each token are: orthographic information, root in-
formation, parts-of-speech tags, type of named entity, and dictionary information
(from the gazetteer lookup process).

6. Experiments, Results, and Discussion
Given the relatively small size of the dataset, the following leave-one-out experimental
setting was adopted, where one document is left-out for testing and the rest of the docu-
ments are used for training:

• Monolingual experiments in Spanish: the Spanish extraction system is trained on
the original Spanish summaries and applied to the held-out Spanish summary;

• Monolingual experiments in English: the English extraction system is trained on
the original English summaries and applied to the held-out English summary;

• Cross-lingual experiments in Spanish: the Spanish extraction system is trained on
the original Spanish summaries and applied to a Spanish translation of an English
summary;

• Cross-lingual experiments in English: the English extraction system is trained on
the original English summaries and applied to an English translation of a Spanish
summary;

• Translation experiments in Spanish: the Spanish extraction system is trained on
the translated Spanish summaries and applied to the held-out translation;

• Translation experiments in English: the English extraction system is trained on
English translated summaries and applied to an English translation;

For the cross-lingual experiments, given the test summary T, the training is the set
of all summaries except the summary which is equivalent to T. In this way we make sure
that the extraction system has not seen the data in the test set. In each experiment we
computed the performance of the extraction system using precision and recall measures.
Precision is the proportion of correct answers. Recall is the proportion of correct answers
returned by the system. Precision and recall are aggregated in an F-score measure where
precision and recall are equally weighted. The final performance is obtained aggregating
the F-scores of all datapoints tested. In Table 2 we present information extraction results
for the clean data in both languages, more detailed information on monolingual exper-
iments is reported in [Saggion and Szasz 2011b]. For train and aviation accidents, the
English system performs better than the Spanish, this is probably because text analysis in
English is more robust. Where the earthquake domain is concerned, the Spanish system
performs better than its English counterpart perhaps due to the distribution of information
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Event Prec Rec F
Train Accident Spanish 0.47 0.41 0.44
Train Accident English 0.65 0.53 0.58
Aviation Accident Spanish 0.64 0.46 0.54
Aviation Accident English 0.68 0.63 0.66
Earthquake Spanish 0.61 0.46 0.53
Earthquake English 0.51 0.37 0.43

Table 2. Mono-lingual extraction performance (training in clean data and evaluat-
ing in clean data).

Event Prec Rec F
Train Accident Spanish 0.87 0.60 0.71
Train Accident English 0.88 0.57 0.70
Aviation Accident Spanish 0.89 0.59 0.71
Aviation Accident English 0.80 0.56 0.66
Earthquake Spanish 0.60 0.48 0.53
Earthquake English 0.85 0.60 0.71

Table 3. Cross-lingual extraction performance (training in clean data and evalu-
ating in translated documents).

in the corpus: the English summaries have less annotations and are more verbose, there
are therefore less instances to learn from and in less regular contexts. Table 3 presents fig-
ures for the cross-lingual experiments. The first striking fact, which is counter-intuitive, is
that the perfomance over translated documents is in some cases better than that observed
in some monolingual cases. An analysis of the distribution of types of information in the
translated documents shows that in some cases there are fewer human annotations in the
translations and therefore more chances for the extraction system to get a correct answer.
On the other hand the translations contain few of the difficult types of information such
as destination or cause of the accident in aviation and railway domains in both Spanish
and English. For the earthquake domains the performance of the cross-lingual Spanish
system is similar to the mono-lingual system, however the English system is performing
better over translations than over source language, here again we believe that the source
summaries in English have more human annotations and therefore more chances to learn.
Finally, Table 4 shows extraction results for the translation experiments, we notice that
some configurations perform better than in the monolingual case, but again the distribu-
tion of information types in the summaries may well be the reason for such behavior.
Note that in most cases the increase in performance is due to a higher improvement in
precision, and this is because there are less information types the extraction system has to
recall.

7. Conclusions, Current, and Future Work

In this paper we have presented a set of information extraction experiments over cross-
lingual summaries in various domains. To the best of our knowledge this is one of the few
studies on this field for the Spanish language. We have shown that our tools are able to
extract full event information relying on linguistic annotations produced by off-the-shelf
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Event Prec Rec F
Train Accident Spanish 0.70 0.57 0.63
Train Accident English 0.76 0.71 0.73
Aviation Accident Spanish 0.82 0.75 0.78
Aviation Accident English 0.70 0.59 0.64
Earthquake Spanish 0.60 0.46 0.52
Earthquake English 0.73 0.64 0.68

Table 4. Translated extraction performance (training in noisy data and evaluating
in noisy data).

robust components.
We have created the first cross-lingual dataset for the study of cross-lingual informa-
tion extraction in Spanish and English and have carried out a set of experiments to show
the value of the dataset, we believe that the obtained results are interesting for further
research. Our current work involves the expansion of the dataset to cover additional do-
mains such as terrorism and sports. We are working towards the integration of parsers
and semantic analysers into the linguistic pipelines to improve the performance of the
extraction systems. In future work we will address automatic clustering-based domain
modelling from summaries and information extraction induction. We also plan to use
cross-lingual extraction results to improve mon-lingual mono-document extraction.
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