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Abstract. The Gaussian mixture model (GMM) is the main technique used in
speaker recognition systems. However, in tasks other than speaker recogni-
tion, GMM is often outperformed by modern classifiers, such as support vector
machines (SVM). This work seeks a better understanding of the reasons that
discriminative classifiers have not been as successful in speaker recognition,
as in other applications. This is done by comparing GMM and a novel tech-
nique called discriminative GMM, which is similar to SVM in many aspects.
Simulation results using the IME corpus show that DGMM can improve the
performance compared to GMM, and indicate that a proper model selection is
essential to make SVM competitive in speaker verification.

1. Introduction

The Gaussian mixture model (GMM) is the main technique used in speaker recogni-
tion systems. The GMM is trained througfenerativelearning, which is often out-
performed by moderuliscriminativelearning techniques [Rubinstein and Hastie, 1997,

Ng and Jordan, 2002]. However, applying discriminative learning to speaker recognition
has proven to be a tricky task [Wan and Renals, 2005]. Powerful techniques, such as sup-
port vector machines (SVM) sometimes perform poorly in speaker recognition compared
to GMM. Such results puzzle researchers that work in machine learning problems other
than speaker recognition, where SVM are often superior.

This work tries to promote a better understanding of this issue. Instead of seeking
to achieve the best results for a specific task, it addresses, for example, the problems that
led us to obtain poor results for SVM in [Imbiriba et al., 2004]. The approach we take
IS to compare generative and discriminative learning, by contrasting GMM and a similar
classifier, calledliscriminative GMM[Klautau et al., 2003]. Besides being a novel tech-
nique, applying DGMM to speaker verification sheds some light on SVM because both
are discriminative learning techniques.

Another contribution of this work is to continue promoting the adoption of the
IME 2002 corpu$, which is a Brazilian Portuguese corpus for speaker recognition. It
has been made available free of charge to several research groups by the Signal Process-
ing Group at IME (http://www.ime.eb.br/ labvoz/), and is a very useful resource for re-
searchers working in speaker recognition. Since now, most of the research in speaker
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recognition in Brazil is conducted with proprietary (and relatively small) datasets. The
IME corpus provides an opportunity to change this situation, and promote the compari-
son of results obtained by different groups given that, besides the corpus, there are good
open source softwares for speaker recognition [Imbiriba et al., 2004].

This paper is organized as follows. In Section 2 we present the frame-based archi-
tecture for speaker verification, a formalism that helps to understand the role of classifiers
in this application. Section 3 discusses classifiers, with emphasis to contrasting GMM and
DGMM, two Bayes classifiers that differ in the training procedure. Experimental results
are presented in Section 4, which is followed by the conclusions.

2. The Frame-Based Architecture for Speaker Verification

Speaker recognition is the process of automatically recognizing who is speaking, and
can be split into speaker identification and speaker verification. Speaker identification
determines which registered speaker provides a given utterance from amongst a set of
known speakers. Speaker verification is a binary problem, in which the system accepts or
rejects the identity claim of a speaker. This work deals exclusively with verification.

The speaker recognition problem is closely related to the conventional supervised
classification. Hence, we start by providing few related definitions. In such framework,
one is given draining set{(xy,v1), ..., (Xy,yn)} containingN exampleswhich are
independently and identically distributed (iid) samples from an unknown but fixed distri-
bution P(x, y). Each exampléx, i) consists of a vectax € X* of dimensionL, called
instance and alabely € {1,...,Y}. A classifieris a mappingF" : XL — {1,...Y}.

Of special interest are binary classifiers, for which= 2, and for mathematical con-

venience, sometimes the labels grec {—1,1}. Some classifiers are able to provide
confidence-valued scorggx) for each class = 1,...,Y. Commonly, these classifiers
use the max-wins rul€'(x) = arg max; f;(x). When the classifier is binary, only a single
scoref(x) € R is needed. For example,jfe {—1, 1}, the final decision can be simply

the sign of the score, i.ef;(x) = sign(f(x)).

Contrasting to classifiers, the input for speaker recognition systems is a matrix
X = {x;}, X € XT*Q, which corresponds to a segment of speech parameterized by the
front endstage [Huang et al., 2001]. The numieéof rows is the number of frames (or
blocks) of speech, an@ (columns) represents the number of parameters of each frame.
If T is fixed (say,I" = 1000 frames),X could be turned into a vector of dimensian=
T x (), and one would end up with a conventional classification problem. However, in text-
independent speaker verification, any comparison between elements of two such vectors
could fail, because they would eventually represent different sounds. Hence, verification
systems often adoptfeame-basedirchitecturé(see, e.g., [Imbiriba et al., 2004]), which
is similar to, but does not exactly match a conventional clasdifier

The frame-based verification system is a mapgihg X¥7*? — {—1,1}, where
—1 and1 correspond to speaker rejection and acceptance, respectively. More specifically,
G(X) = sign(g(X) — A), whereg(X) is a score provided by thmodelcorresponding to
the claimed identity and is a threshold that allows to tradeoff the false rejection and false
acceptance rates. In this architecture, the speaker model repeatedly invokes a conventional

2An alternative architecture is discussed in [Wan and Renals, 2005, Smith and Gales, 2002].
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classifier to obtain a confidence-valued scffe) and calculateg(X) = Zthl f(xy) or
eventually,g(X) = 3-,_, log(f(x.))-

There are many learning algorithms for training classifiers (see,
e.g., [Hastie et al., 2001]). Roughly speaking, all of them can be used in speaker
verification. The next sections discuss some of the most prominent classifiers, and pros
and cons of their adoption in this application.

3. Classifiers for Frame-Based Verification

GMM, which is a special case of a Bayes classifier, is the most popular classifier for
speaker verification. However, in many other tasks, GMM is outperformed by other clas-
sifiers. Among these competitors, of special interest are the ones bakedhehlearn-

ing, such as SVM [Cortes and Vapnik, 1995]. Notice that a Bayes classifier is called by
some authors a “kernel” classifier (see, e.g., page 188 in [Hastie et al., 2001]). However,
by kernel classifier we mean the ones obtained through kernel learning, as defined, e.g.,
in [Scholkopf and Smola, 2002]. See [Klautau et al., 2003] for a comparison of GMM
and kernel methods for some well-known datasets.

In spite of the good performance achieved by kernel methods (and other discrim-
inative techniques) in several tasks [Scholkopf and Smola, 2002], adopting it in speaker
verification remains a challenge. For example, GMM outperformed SVM in some of our
preliminary experiments [Imbiriba et al., 2004]. Such conclusion puzzles machine learn-
ing experts, but speech verification has idiosyncrasies that require better understanding for
the successful adoption of discriminative learning. This work is a small step towards this
goal. To make the simulations manageable, it deals exclusively with SVM, which is by far
the most popular kernel classifier, and two Bayes classifiers: GMM and DGMM. We start
by discussing SVM and afterwards we conduct a thorough review of Bayes classifiers.

3.1. SVM

SVM (and other kernel methods) can be related to regularized function estimation in a
reproducing kernel Hilbert space (RKHS) [Tikhonov and Arsenin, 1977]. One wants to
find the functionF’ that minimizes

—ZL (%), ) + Al P2, (1)

whereHy is the RKHS generated by the kerri€] ¥ = h + b, h € Hi, b € R and
L(F(xy,),yn) is aloss function.

The solution to the optimization problem described in Equation 1, as given by the
representetheorem [Kimeldorf and Wahba, 1971], is

N
= Z wnKC(x,%,) + b. (2)

This expression indicates that SVM and related classifiers arample-
based [Scholkopf and Smola, 2002]:F is given in terms of the training examples
x,. In other words, assuming a Gaussian keték, x') = e 7II*I*, the mean of a
Gaussian is restricted to be a training example
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Some exampleg,, may not be used in the final solution (e.g., the learning proce-
dure may have assigneg = 0). We callsupport vectorshe examples that are actually
used in the final solution. For saving memory and computations in the test stage, it is con-
venient to learn a sparde, with few support vectors. In speaker verification, the number
of support vectors can be as high as 90% of the training set. For SVM training, there is the
“complexity” parametet’’, which can be used to influence the number of support vectors.

The next subsection discusses Bayes classifiers, for which one can say the number
of Gaussians (equivalent to the number of support vectors when SVM uses a Gaussian
kernel) is specified beforehand.

3.2. Generative and discriminative Bayes classifiers

Bayes classifiers are ideal to contrast generative and discriminative learning applied to
speaker verification. Throughout this work, the nomenclature follows the one used
in [Duda et al., 2001], whefeP(y|x), P(x|y), P(y) and P(x) are calledposterior, like-

lihood, prior andevidencerespectively, and are related through Bayes' rule

P(x|y)P(y)

P(x) 3)

Pylx) =
Bayes classifiers attempt to select the lab@/max,—, _y P(x|y)P(y), which maxi-
mizes the posterior probability. However, neitliefy), nor P(x|y) is known, hence the
classifiers use estimaté¥y) and P(x|y) and maximize

P(x) = arg max P(x|y)P(y). (4)
In most cases, the priaP(y) can be reliably estimated by counting the labels in the
training set, and we assume here tR4y)) = P(y). EstimatingP(x|y) is more difficult.

Hence, classifiers typically assume a parametric distribuflag)y) = P@y (x|y) where

©, describes the distribution’s parameters to be determined (e.g., mean and covariance
matrix if the likelihood model is a Gaussian).

If P(x, y) = P(x,y), this classifier achieves the optimal (Bayes) er-
ror [Duda et al., 2001]. However, with limited data, one has to carefully choose the model
assumed for the likelihoods and the algorithm for their estimation.

Different likelihood models have been adopted for Bayes classifiers. Adopting
individual diagonal covariance matric&s,, for each Gaussian, one has the model for
both GMM and DGMM classifiers:

X’y Z wyg X|u’yg7 Eyg) (5)

The distinction between GMM and DGMM is their training algorithm.

Training a Bayes classifier consists in estimating the parametefsall its like-
lihood functionsP(x|y). The conventional way of estimating for all Bayes classi-
fiers but DGMM is through maximum likelihood estimation (MLE). MLE classifiers seek

3We useP to denote both probability mass functions and densities.
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©9 = arg maxeg R9(O), where

N A~
HP Xn|Yn)-

The Bayes classifiers trained with MLE are callgdnerative[Ng and Jordan, 2002]

or informative [Rubinstein and Hastie, 1997]. The term generative is used because if
the estimatedP(x, y) is “close” to the true distributiorP(x, y), we could useP(x, y)

to generate samples with statistics similar to the ones of our original training set.
However, for the sake of classification, we do not need to k@ep For example,

one cannot generate samples out of a LDA classifier after simplifying the expres-
sions [Rubinstein and Hastie, 1997] that defifie In such cases, the term informative
seems more appropriate.

By contrast, discriminative Bayes classifiers (and other probabilistic classi-
fiers, such as the relevance vector machine [Scholkopf and Smola, 2002]P&eek
arg maxg R4(O), where R
RY(©) = P(y|x).

Note that

P Xn|yn n)

=)
_ H( Heyn (Xn|]) (])) . )

(6)

RY©) =

It follows that discriminative procedures try not only to maximize the likelihood of exam-
ples(x,y), but, at the same time, minimize the likelihood of competing clagséy.

Conventionally, the expectation-maximization (EM) algo-
rithm [Dempster et al., 1977] is used for MLE training of GMMs. As for others
generative-discriminative pairs of classifiers, training a discriminative Bayes classifier is
harder than a generative. There are no closed-form solutions and iterative optimization
algorithms are needed. In this work, DGMMs are trained with the algorithm proposed
in [Klautau, 2003], which is called hefast extended ENFFEEM) algorithm.

Roughly speaking, if the modeling assumptions are correct, adopting a gen-
erative classifier is more appropriate tias et al., 1988, Rubinstein and Hastie, 1997,
Ng and Jordan, 2002]. In fact, if training data is scarce, generative classifiers can achieve
better performance than their discriminative counterparts [Ng and Jordan, 2002]. On the
other hand, there is empirical evidence showing that discriminative outperform generative
classifiers if the likelihood model is not correct (see, e.g., [Rubinstein and Hastie, 1997])
or the estimated prior probabilities do not match the statistics of the test
set [Nadas et al., 1988].

3.3. Comparing the Classifiers

A SVM with a linear kernel can be converted to a perceptron, which avoids storing the
support vectors and saves computations during the test stage. However, for speaker veri-
fication, the task posed to the classifier is very hard: to disambiguate a speaker from the
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GMM || DGMM || SVM
Dependency oV (training examples) O(N) || O(N) | O(N?)
Support multiclass problems yes yes no
Optimization criterion RI(©) [ RYO) | Egq. (1)
Low memory footprint through sufficient statistics yes yes no
Is the number= of Gaussians pre-specified? yes yes no
Gaussian means restricted to be training instanges®o no yes
Same (pre-specified) variance for all Gaussians|? no no yes

Table 1. Comparison of GMM, DGMM and SVM.

others based only on a short segment (typically 20 to 40 milliseconds of speech). Besides,
the space dimension is relatively low (typically Q=39). Hence, sometimes the SVM train-
ing algorithm does not properly converge with the linear kernel, and one needs to adopt a
non-linear kernel. In this subsection, we assume Gaussian kernels. The Gaussian kernel
allows for a direct comparison of SVM with GMM and DGMM, given that in all three
cases the training procedure seeks a linear combination of Gaussians.

For GMM and DGMM, the score is the subtraction of the log-likelihoods
obtained through twoconvex linear combinations (mixtures) of Gaussians, one
for the target speaker and the other for theniversal background model
(UBM) [Wan and Renals, 2005]. For SVM, the combination is given by Eq. (2) and the
weightsw do not need to obey probabilistic constraints.

Concerning the computational cost for training the classifiers, GMM is the best
option because its memory requirement is very small and the EM algorithm is fast. In
the E-step, EM goes over the whole training set just collecsinfficient statisticgor
the M-step (see, e.g., [Klautau, 2003]). DGMM also exploits sufficient statistics, but
requires more computations. The FEEM algorithm incorporates some speedup tech-
nigues [Klautau, 2003] and leads to a training time around 2 to 3 times longer than GMM.
SVM requires a much longer training time, as it scales approximately@thi?).

Table 1 presents a summary of the most important features for the three classifiers.
The next section presents experimental results achieved by them.

4. Experimental Results

In this section we discuss experimental results comparing GMM, DGMM and SVM. We
start by describing the IME corpus, adopted for the simulations.

4.1. IME Corpus

The IME corpus is composed by 468 fitesorresponding to 21.9 hours of speech. For the
sake of comparison, the popular NIST-2001 corpus (http://www.ldc.upenn.edu) is com-
posed by 2350 (shorter) files, which correspond to 26.4 hours of speech. The utterances in
the IME corpus were collected from cellular and wired phone calls made by 75 speakers.
The amount of files in each group is: 111 - cellular test, 118 - cellular train, 120 - wired
test and 123 - wired train.

“In fact, the IME corpus originally has 472 files, but 4 are corrupted.
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(a) Normalized histogram. (b) Zoom.

Figure 1. NIST (discrete representation using vertical lines) and IME (continuous
curve) normalized histograms of speech samples. NIST has a peak of 0.1 around
zero, while IME almost reaches 0.5.

In order to better organize the simulations, we converted the original 11-digit file
names (e.g., 12151110051.wav) into names such as id001.cel.train.man.RJ.cn.42.wav,
where a dot separates the information fields. These fields represent a unique speaker
ID, cellular or wired phone, train or test, gender, speaker geographical origin, recording
conditions, speaker’s age and file extension (wav).

The D41ESC Dialogic board was used to collect all utterances. According to
its documentation, this board supports 8-bit P@GMind A-laws. However, the speech
files are stored in the Microsoft RIFF format as 8-bit PCM likeaOne would ex-
pect 12 or more bits per sample when expanding from the logarithmic to a linear
scale [Rabiner and Schafer, 1978]. Besides this problem, silence represents a relatively
high percentage of the total amount of data. Figure 1 compares the histograms of speech
samples from all utterances in the NIST 2001 and IME corpora. One can see that silence
is much more frequent in the IME than in the NIST corpus.

Hence, we tried to eliminate silence from the utterances using a simple voice
activity detector (VAD) that is based on the signal energy. The VAD routine generates
a label file, indicating where silence occurs. Then, to avoid problems when calculating
derivatives of the parameters, we run the front end using the whole utterance, and cut off
the frames corresponding to silence based on the VAD label file.

4.2. Performance Results

In [Imbiriba et al., 2004] we presented results using the IME corpus for several front
ends. Here we adopt the same experimental setup, but use exclusively 12 perceptual
linear prediction (PLP) parameters, plus the energy and two first derivatives (the so-called
PLPEDAS39). We restrict the simulations even more by using only the utterances for the
“wired” phone calls (not using the “cellular” utterances). Even this restricted scenario is
enough for stressing the pitfalls of applying discriminative learning to speaker verifica-

5The 20-th byte of a Microsoft RIFF file (WAV) indicates the kind of PCM: 6 means A-law,/#lswv
and 1 is linear PCM. The IME corpus uses 1.
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Figure 2. The error (%) per frame for GMM and DGMM.

tion.

The first point to consider is that the training algorithm tries to find the best classi-
fier F, while the overall goal is to find the best systémThe two are obviously related, as
indicated in Figures 2 and 3, which show the error rate per frame aredjtred error rate
(EER) [Imbiriba et al., 2004], respectively, where the abscissa is the number of frames
in the training set. The results were obtained adopting 20 Gaussians for both GMM
and DGMM, following the conclusions in [Imbiriba et al., 2004]. One can see that, as
discussed in [Ng and Jordan, 2002], generative can outperform discriminative classifiers
when the training data is scarce. Our results indicate that this behavior also happens for
SVM.

One should note that the task of learnifigs very hard: to disambiguate a speaker
from the others based only on a short segment (typically 20 to 40 milliseconds of speech).
Besides, the space dimension is relatively low (typically Q=39), i.e., there are relatively
few parameters and a strong overlap of the classes in the input &yadéhese two facts
impact specially the SVM classifier, which performed poorly with an average EER of 3%
when the training set had 1500 frames, which is higher than the GMM and DGMM as
shown in Figure 3. The next subsection discusses some issues related to this situation.

4.3. The Importance of Model Selection for SVM

A classical way of performing model selection is through cross-validation (CV), typically
with 10 folds. The folds are disjoints, that is, each vestdrelongs to only one fold. In

many situations, the error using such validation sets provide a good indication of general-
ization capability. Unfortunately, this is not true for typical speech processing scenarios.
For example, training a verification system with CV, would lead to overly optimistic er-

ror rates for the validation set, because the impostors in this set are the same used in the
training. Besides, some applications require, and the speech corpora are organized ac-
cordingly, that training should use only frames from an unique utterance or conversation
(for example, recorded over a single phone call). On the other hand, for testing, one has
to use frames obtained in a different recording situation (e.g., channel mismatch).
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Figure 3. Equal error rate (%) for GMM and DGMM.

Ideally, the validation set (for performing model selection when training a classi-
fier) should have frames from the target speaker (positive examples) with the same mis-
matches that will be found during test, and impostors (negative examples) that do not
coincide with the ones in the training set. When that is not the case, GMM and DGMM
present a high degree of robustness, while SVM often fails, overfitting the training data
and leading to relatively high error rates in the test set.

In order to study this situation, we conducted an experiment where the validation
set was made the same as the test set. Note that this is not the same as testing with
the training set. The validation was simply used to choose the number of Gaussians
(for GMM and DGMM), C and~ for SVM. The results showed that SVM was able to
outperform both GMM and DGMM.

5. Conclusions

In this work the adoption of DGMM in speaker verification is discussed. Simulation
results using the IME corpus showed that DGMM can improve the performance compared
to GMM. However, the main goal was not to achieve improvements in accuracy, but get
insight in the pitfalls of applying discriminative learning to speaker verification. This is
done by comparing GMM and its discriminative counterpart, the DGMM, which is similar

to SVM and other kernel methods in many aspects, especially when they use the Gaussian
kernel.

Among many factors, such as the training set size, the one that impacts discrimina-
tive learning the most, is the model selection stage. A proper model selection is essential,
for example, to make SVM competitive in speaker verification. Generative classifiers are
more robust to overfitting and require less care in terms of choosing the validation set. Fu-
ture research points towards comparing GMM, DGMM and SVM using the whole IME
corpus, mixing utterances from cellular and wired phone calls, and testing different ways
of performing model selection.
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