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Abstract. Named Entity Recognition (NER) is an important task in Natu-
ral Language Processing. It provides key features that help on more ela-
borated document management and information extraction tasks. In this
paper, we propose seven machine learning approaches that use HMM,
TBL and SVM to solve Portuguese NER. The performance of each model-
ing approach is empirically evaluated. The SVM-based extractor shows a
88.11% F-score, which is our best observed value, slightly better than TBL.
This is very competitive when compared to state-of-the-art extractors for
similar Portuguese NER problems. Our HMM has reasonable precision
and accuracy and does not require any additional expert knowledge. This
is an advantage for our HMM over the other approaches. The experimen-
tal results suggest that Machine Learning can be useful in Portuguese
NER. They also indicate that HMM, TBL and SVM perform well in this
natural language processing task.

1 Introduction

Named Entity Recognition (NER) is the problem of finding all proper nouns
in a text and to classify them among several given categories of interest or to
a default category called Others. There are three usual given categories: Per-
son, Organization and Locations. Time, Piece, Event, Abstraction, Thing, and
Value are some additional but less usual categories of interest. Here are some
examples of possible Named Entities (NE):

– Fernando Henrique Cardoso discursou sobre o seu plano de.... (Person)
– A Intel lancará uma nova linha de... (Organization)
– A viagem até Cascavel tomará a maior parte... (Location)
– Segunda-Feira já estaremos em casa para... (Time)
– O Terceiro Workshop sobre Segurança do Trabalho será sediado ... (Event)

Here, by named entities, we mean the role the entity performs without con-
sidering its current context. For example:

– PUC-Rio está contratando novos professores...
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– Tal evento será realizado na PUC-Rio a partir...

In the first sentence, we have no doubt that PUC-Rio is an organization
given the context, although the second example can lead to an ambiguity whe-
ther it is an organization or a location. These phenomena can occur in various
sentences like:

– Brasil disputará a Copa do Mundo....

These ambiguities are raised because the author omitted certain words that
could disambiguate the sentence, like:

– Tal evento será realizado nas dependências da PUC-Rio a partir...
– A seleção de futebol do Brasil disputará a Copa do Mundo....

In this paper, we consider only the context free NER problem for the Por-
tuguese language.

For the English language, NER is one of the basic tasks in complex NLP
systems. In [1, 2], a Hidden Markov Model-based Chunk Tagger is used. The
performance of the proposed system shows a F-score above the 94% threshold.
In [3], a decision tree built with the C4.5 algorithm is applied to the Portuguese
and Spanish NER problem of identifying the boundaries of the entities.

In [4], a different approach is used for this problem. Rules of form and simi-
larity are used to identify named entities with the aide of the REPENTINO
gazetteer [5]. Palavras-NER [6], the best named entity extractor reported for
the Portuguese, is based in a full parser and achieves a F-score of 80.61% in the
Golden Collection of HAREM [7] for all entities.

In HAREM, the problem of finding named entities is slightly different, since
every capitalized word is assumed as a NE. Here, however, we only consider
proper nouns as candidates to NE. Hence, a direct comparison between our
findings and HAREM’s benchmarks is not possible. Nevertheless, the results
show some consistent characteristics and indicate that our ML solutions are
very competitive.

Here, we present our findings on seven Machine Learning modeling ap-
proaches to solve Portuguese NER. In the first one, a greedy algorithm with the
help of a gazetteer is used. In the second, a pure HMM model is evaluated. In
the third, we test the same HMM model with the greedy algorithm as an initial
classifier. In the next two experiments, we use TBL in combination with either
the greedy algorithm or our HMM model. In the sixth, a pure SVM model is
evaluated. And in the last one, we test the SVM model with the help of the
greedy algorithm.

The performance of each modeling approach is empirically evaluated. The
SVM-based extractor shows a 88.11% F-score, which is our best observed value,
slightly better than TBL. This is very competitive when compared to state-of-
the-art extractors for similar Portuguese NER problems. Our HMM has reason-
able precision and accuracy and does not require any additional expert knowl-
edge. This is an advantage of our HMM over the other approaches. The experi-
mental results suggest that a Machine Learning (ML) approach can be useful in



Portuguese NER. They also indicate that HMM, TBL and SVM perform well in
this natural language processing task.

The paper is organized as follows. In the next section, we describe the basic
ML techniques that are used in our modeling, that is, HMM, TBL and SVM. In
section 3, we describe our modeling strategies for Portuguese NER. In section
4, we summarize our empirical findings. Finally, in section 5, we present our
concluding remarks.

2 Techniques

Our approaches to NER use three basic machine learning techniques: Hidden
Markov Models, Transformation-Based Learning and Support Vector Machines.

2.1 Hidden Markov Models

Hidden Markov Modeling (HMM) [8] is a powerful probabilistic framework
used to model sequential data. HMM is widely used in Natural Language Pro-
cessing tasks such-as part-of-speech (POS) tagging, text segmentation and voice
recognition.

In HMM, we have two basic concepts: observations and hidden states. In
NLP tasks, the sequence of words that form a sentence are usually considered as
the observed data, and the states represent semantic information related to the
sentence. The HMM parameters are set to maximize the log-likelihood between
the sentence and the semantic information.

With the HMM parameters, one can easily evaluate the best state sequence
using the Viterbi algorithm [9]. The best sequence of states is the one that has the
highest log-likelihood with the given sentence. The states obtained can, then,
be mapped to the semantic tags generating a NLP classifier. The success in the
classification process is highly dependent on the choice of states and their cor-
responding observables. Nevertheless, generic models can perform quite nicely
in some problems.

2.2 Transformation Based Learning

Transformation Based error-driven Learning (TBL) is a symbolic machine learn-
ing method, introduced by Eric Brill [10]. It is also used in several important
NLP tasks, such as part-of-speech (POS) tagging [11], parsing, prepositional
phrase attachment and phrase chunking, achieving state-of-the-art performance
in many of them.

The main idea in a TBL algorithm is to generate an ordered set of rules that
can correct tagging mistakes in the corpus, which have been produced by an
initial guess classification process called, Baseline System (BLS). The rules are
generated according to a list of templates given by the developer, which are
meant to capture the relevant feature combinations to the problem by succes-
sively correcting the mistakes generated by the BLS and also by TBL itself.



This learning algorithm is a mistake-driven greedy procedure which, iter-
atively, acquires a set of transformation rules. The TBL algorithm can be de-
scribed as follows:

1. The initial guess classification is used to evaluate an un-tagged version of the train-
ing corpus;

2. The results of the classification are evaluated by a comparison with the tagged ver-
sion of the corpus and, whenever an error is found, all rules that can correct it are
generated by instantiating the rule templates with the current token feature’s con-
text. A new rule may correct tagging errors, but can also generate some other errors
by changing correctly tagged tokens;

3. The rules’ scores, that is, the number of errors repaired minus number of errors
created, are computed. If there is no rule above an arbitrary threshold score value,
the learning process is stopped;

4. The rule with best score is selected, stored in the ordered set of learned rules and
applied to the whole corpus;

5. The process is retaken in step 2.

2.3 Support Vector Machines

Support Vector Machines (SVMs) were developed by Vapnik et al. [12] as a
method for learning linear and, through the use of kernels, non-linear rules.
They have successfully been used for isolated handwritten digit recognition,
object recognition, speaker identification, charmed quark detection, face detec-
tion in images, and text categorization [13].

SVMs use geometrical properties in order to compute the hyperplane that
best separates a set of training examples. When the input space is not linearly
separable SVM can map, by using a kernel function, the original input space to
a high-dimensional feature space where the optimal separable hyperplane can
be easily calculated. This is a very powerful feature, because it allows SVM to
overcome the limitations of linear boundaries. They also can avoid the over-
fitting problems of neural networks as they are based on the structural risk
minimization principle.

The standard SVM is intended to solve binary classification problems. How-
ever, they can also solve multi-class classification problems by decomposing
them in several binary problems. One possible decomposition technique is the
one-against-one approach, in which k(k−1)

2 classifiers are constructed and each
one trains data from two different classes. In classification a voting strategy is
used: each binary classification is considered to be a voting where votes can be
cast for all data points - in the end data points are designated to be in a class
with maximum number of votes.

3 NER Modeling

3.1 Corpus

We use a corpus with 2,100 sentences taken from the SNR-CLIC corpus [14],
already annotated with part-of-speech tags. The NE tags are manually added
following the Active Learning (AL) [15] scheme described below



a small quantity of sentences are randomly chosen and manually tagged;
repeat

using the current manually tagged sentences, a classifier is built;
the remainder of the corpus is classified using the current classifier, and
ranked according to a classification confidence measure;

the worst n sentences according to the confidence measure are selected,
manually tagged and incorporated to the current corpus;

until the example set is large enough.
Through a preprocessing step, all consecutive proper nouns appearing in

the corpus are concatenated, generating a single entity. Similarly, all proper
nouns appearing in the corpus connected by a preposition or an article are also
concatenated, generating a single entity. Also some Portuguese contractions,
mainly prepositions plus articles are splitted. For instance, the following trans-
formation in the corpus is observed:

– um informe do Conselho Nacional da População .
– um informe de o Conselho=Nacional=da=População .

The following tag set is used to enconde NER: {PER, ORG, LOC, O}. The
PER, ORG and LOC tags are used to respectively tag the entities Person, Orga-
nization and Location. Whereas the O tag is used otherwise.

Examples of the encoding are shown below.

– ... presidente/O de/O a/O instituição/O ,/O Lewis=Preston/PER ./O
– ... de/O o/O sudoeste/O de/O os/O EUA/LOC onde/O ...
– ... ,/O a/O Mazda/ORG rompeu/O negociações/O com/O ...

With these tagging conventions, we find 3,325 NE examples in the corpus.

3.2 Baseline System

The Baseline System (BLS) is an initial classifier. It is usually based on a set of
simple heuristics.

It is also an essential component in the TBL approach, since it provides the
initial classification guess for the TBL error correcting scheme.

For Portuguese NER, our BLS was built with the four main components
described below.

– Location Gazetteer - a gazetteer of names of continents, countries and their
capitals, states and their capitals from Brazil extracted form the Web;

– Person Gazetteer - a gazetteer of popular English and Portuguese baby na-
mes extracted from the Web;

– Organization Gazetteer - a gazetteer of the top 500 enterprises measured by
gross revenue extracted from the Fortune magazine;

– Preposition Heuristic - a greedy heuristic based on the last preposition pre-
vious to a proper noun. Based on a small portion of the corpus, we create a
simple rule relating each preposition to the entity that most followed it.

Whenever a proper noun is found, we apply the BLS in the order above until
a match is made.



3.3 HMM Model

Our HMM based models are very similar to the one proposed in [16, 17]. A
simple way to model NER using HMM is to use the NER-tags (PER, ORG, LOC,
O) as the hidden states and the pos-tags as the observations. Each sentence is
then mapped to its pos-tag sequence. The HMM probabilities are estimated by
the relative frequencies obtained through feature counting in the training data.
A especial symbol, UNKNOWN , which can be emitted in any state, is created
to deal with unobserved data.

When applying the model to classify an instance, the sentence is first map-
ped to its pos-tag sequence. Next, the Viterbi algorithm is applied to find the
best NER-tag sequence.

This simple model is quite inefficient. Since it has a small number of states,
it does not take advantage of the inherent local structure of the sentence near
to a NE. This limitation can be reduced by the introduction of new enhanced
states, generated online and based on the tags manually introduced. Hence, the
following tags are used:

– OAT, a tag immediately after a given T tag;
– OBT, a tag immediately before a given T tag;
– OCT, a tag immediately after a OAT tag;
– ODT, a tag immediately before a OBT tag;
– OET, a tag immediately before and after the same T tag;
– OHT, a tag immediately after a given T tag and before another T’ tag;

where T tag is one of the NER-tags. For instance, for the PER tag, we obtain
the following new tags: OAPER, OBPER, OCPER, ODPER, OEPER and OH-
PER. As we can map a tag to two or more different states, we add an extra
relabeling procedure, which uses an order of preference for the states.

With this relabeling procedure we enhance our results, as a consequence of
the O tag refining. Now we can improve our model by taking advantage of
the available lexical information. Normally, in NLP tasks, treating all preposi-
tions as the same can lead to many errors. Whenever a preposition appears in a
sentence, we replaced it by its corresponding lexical information.

To help the classification process, the BLS can be evaluated before the HMM
classification and its evaluated entities used instead of the pos-tag as the HMM
observations.

3.4 TBL Model

To apply TBL, some of its components must be specialized to the current task.
Our key modeling decisions are described below.

Initial Classification - we tested two different initial classifiers: the Baseline
System, and the HMM Model.

Templates: - several sets of templates were tested in combination with the
features word, pos and ne tags. The best template set that we found consists



of some generic templates, together with some specific ones. The generic tem-
plates use a combination of the features in a neighborhood of two tokens. On
the other hand, the specific templates look for specific patterns, mainly for se-
quences of named entities, prepositions, articles, precedent verbs, adverbs and
nouns.

Examples that illustrate our template set are:

1 ner[0] word[-1] pos[-1] word[-2] pos[-2];
2 ner[0] word[-1,-3] where{pos=PREP} word[-1,-3] where{pos=ART} pos[-1];
3 ner[0] ner[-2,-2] where{ner=LOC} pos[-1].

The first template creates good rules whenever a mistake can be corrected
by using the two previous word and pos-tags. The second one generates rules
based on the preposition plus an article previous pattern. The last one tries to
catch sequences of Location entities.

3.5 SVM Model

SVM is designed to classify data points in a vector space. Therefore, our model
needs to map each token in the corpus to a n-dimensional vector. The following
paragraphs describe this conversion process.

First, similarly to what is described in [18], we select which neighbor tokens
to use by defining a window of size 5. This means that the classification of
a token takes into account the token itself, the 2 preceding tokens and the 2
proceeding tokens. After this, we decide which features are interesting. For each
relevant neighbor token we chose the following features: the word, its pos-tag
and an initial classification, when provided.

We observe that all the chosen features store categorical data. Therefore, we
have to represent each of them as a vector of zero-one variables where each co-
ordinate refers to a possible feature value. In such vector the coordinate related
to the observed feature value is set to one, while all the others set to zero.

Finally, we obtain an unique vector to represent each token in the corpus
by concatenating all the vectors described above. When an initial classification
is provided, such unique vectors have 44,844 coordinates each; otherwise, they
have 44,824 coordinates each. Just a few of these coordinates have non-zero
value. Hence, we adopted the sparse format representation used in [19].

SVM can learn non-linear classification models through the use of kernel
functions. However, we train a soft margin linear classification model which
accepts an amount of training errors. We chose this model because it takes less
time to be trained, while leading to fairly good results.

4 Experimental Results

Validation of the chosen approaches is conducted with a 10 samples cross-
validation. For each sample, the corpus is randomly divided into 70% of the
sentences for training and 30% for test.



Here, we report the results we found on the seven most important experi-
ments. Their corresponding settings are described below

1 BLS: the application of the Baseline System.
2 Plain HMM: HMM with the addition of the enhanced states.
3 BLS + HMM: HMM with the Baseline System as the Initial Classifier.
4 HMM + TBL: TBL with previous HMM Extractor as the Initial Classifier.
5 BLS + TBL: TBL with Baseline System as the Initial Classifier.
6 Plain SVM: soft margin linear SVM with window size five.
7 BLS + SVM: SVM with the help of the Baseline System.

The HMM and TBL algorithms used implementations developed in LEARN
laboratory at PUC-Rio. The SVM algorithm used a public implementation of
SVM called libsvm [19].

Table 1 shows the results for each experiment. Bold values indicate the best
statistic in each column.

Precision (%) Recall (%) F-score (%)
Experiment Mean Max Min Mean Max Min Mean Max Min
BLS 73.11 - - 80.21 - - 76.50 - -
Plain HMM 65.22 66.32 63.33 67.10 69.25 65.16 66.14 67.76 64.23
BLS + HMM 77.36 79.39 72.78 78.79 82.04 75.45 78.07 80.18 74.09
HMM + TBL 75.88 78.31 70.68 74.67 78.01 70.82 75.27 78.01 70.75
BLS + TBL 85.84 87.61 84.01 88.74 90.08 87.37 87.26 88.58 85.66
Plain SVM 83.70 84.80 81.91 86.30 87.50 85.02 84.98 86.02 83.44
BLS + SVM 86.98 89.34 85.57 89.27 91.95 87.72 88.11 90.63 87.07

Table 1. Results for the seven experiments.

Plain HMM shows very good initial F-scores, since it has very little ex-
pert knowledge, indicating that it is good alternative when no specific domain
knowledge is available. BLS + SVM outperformed the others integrating SVM
with a good heuristic and the help of a little gazetteer, this was slightly better
than the TBL approach.

The most common errors made by our best extractors (SVM and TBL) are
proper nouns that are preceded by:

– a definite article, as in ”O sub-prefeito de a Barra=da=Tijuca ... ”, which are
identified as Organizations

– a noun, as in ” ... de o partido Sakigake ... ”, which are identified as People
– the preposition em, as in ”Em Furnas ( Rio de Janeiro ) os ...”, which are

identified as Locations

Some of these errors are related to the possible roles the same entity can
have in different contexts, what generates an ambiguity very hard to distin-
guish without extra information.



In Table 2, we show the best results for specialized NE extractors. We build
one specific extractor for each NE category.

Precision (%) Recall (%) F-score (%)
Experiment Entity Mean Max Min Mean Max Min Mean Max Min

PER 87.78 90.69 83.95 81.13 83.84 76.96 84.28 85.51 82.80
BLS + TBL ORG 75.35 79.08 72.98 91.93 94.62 89.47 82.79 85.16 81.34

LOC 93.10 96.40 90.69 81.85 86.27 75.89 87.08 89.54 83.48
PER 87.71 89.89 84.13 89.15 92.82 86.33 88.41 90.50 85.48

BLS + SVM ORG 84.36 89.56 80.79 88.52 91.18 85.06 86.36 88.17 83.50
LOC 96.18 98.60 93.88 82.09 85.95 78.08 88.55 90.63 86.38

Table 2. Best specialized extractors for each NE category.

We notice here that the easiest NE to be recognized is Location, mainly be-
cause of the easiness of building an efficient gazetteer of this kind of entity. On
the other hand, the most difficult one is Organization, mainly because many
entities can take an Organization value in some contexts.

5 Concluding Remarks

This work shows some promising ML approaches to Portuguese NER.
The SVM and TBL methods appear as an excellent alternative when lin-

guistics experts can provide their expertise to the system, either by building a
specific BLS, by choosing the right features to use or by formulating the tem-
plates that capture the domain knowledge. This can be viewed as the premium
price solution. On the other hand, the plain HMM alternative gives good val-
ues for precision and accuracy, without the support of any specific linguistic
intelligence. This can be viewed as the cheap solution.

Our SVM approach outperformed the other solutions, showing a 88.11%
F-score, which is slightly better than the one obtained by PALAVRAS-NER. Al-
though this comparison cannot be fully taken into account, since there are some
differences in the definition of the two problems, the results of the NE evalua-
tion are similar when comparing each one of their , corresponding entity cate-
gory extraction. In both cases, the best algorithms dealt better with Locations
than Organizations, with People showing medium difficulty.

A next step in this work is to evaluate the same model using the Golden
Collection from HAREM [7]. Preliminary straightforward tests do not show
good performance, since there are some major differences in the definition of
NE. For instance, in the HAREM NER problem, any capitalized word must be
classified as an entity, our classifiers, on the other hand, only consider proper
nouns as candidates for an entity.

We showed that our extractors can have a great benefit in the automatic con-
struction of entity gazetteers that could aide various other NLP tasks. We shall



continue tuning the parameters and enhancing our template system to catch
other kinds of named entities, as well as to be able to evaluate its performance
for the Golden Collection.
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