

A Language Modelling Tool for Statistical NLP

Daniel Bastos Pereira, Ivandré Paraboni

Escola de Artes, Ciências e Humanidades – Universidade de São Paulo (EACH / USP)
Av.Arlindo Bettio, 1000 - 03828-000, São Paulo, Brazil.

{daniel.bastos,ivandre}@usp.br

Abstract. In recent years the use of statistical language models (SLMs) has
become widespread in most NLP fields. In this work we introduce jNina, a
basic language modelling tool to aid the development of Machine Translation
systems and many other text-generating applications. The tool allows for the
quick comparison of multiple text outputs (e.g., alternative translations of a
single source) based on a given SLM, and enables the user to build and
evaluate her own SLMs from any corpora provided.

1. Introduction
Consider a Portuguese native speaker who wants to say (in English) that she is thinking
of buying a new car, but who is not sure about the verb choice. In that case, a
reasonable (and helplessly wrong) guess would be to mimic the equivalent Portuguese
structure “Eu estou querendo comprar um carro novo” to produce (a) instead of the
correct form (b):

a. I am wanting to buy a new car.
b. I am thinking of buying a new car / I am considering buying a new car.

 What actually makes (b) more appropriate than (a) is immaterial to the present
discussion, but there is one thing that we can safely assume to be true: very frequently
we hear “I am” being followed by verb forms such as “thinking” or “considering”, but
very seldom we hear “I am” being followed by “wanting”, even though “wanting” is a
proper verb form in its own right.

 The simple idea that some word sequences are more frequent than others has
lead to the concept of language modelling that is now part of mainstream NLP research.
In particular, Statistical Language Models (SLMs) based on n-grams are now widely
used in most NLP fields, not to mention the large amount of work on Statistical MT in
which they play a central role (e.g., Brown et. al, 1990; 1993). Besides their power to
represent some crucial aspects of language, SLMs are quick and easy to implement, and
do not require the labour-intensive development of NLP resources such as dictionaries
or grammars, making them ideal for research in relatively resource-poor languages such
as Portuguese.

 The uses of SLMs stretch well beyond the design of components of NLP
applications. For example, Machine Translation (MT) systems and many other text-
generating applications often make use of overgeneration techniques to produce a large
number of versions of the output text, from which inappropriate (e.g., ill-formed or
ungrammatical) alternatives are filtered out to arrive at the desired output. Thus, in
order to decide how to translate e.g., the NP “Mao’s red book” to Portuguese given a

1679

standard bilingual dictionary, we may simply generate all possible permutations of the
individual NP constituents and compare them to select the one that closest ‘resembles’
the target language, as in (f) below:

c. o de Mao vermelho livro
d. o vermelho de Mao livro
e. o livro de Mao vermelho
f. o livro vermelho de Mao

 There are of course many ways in which we may decide that (f) is ‘better’. One
such way is by asking human evaluators to do so within a certain level of agreement.
This may however be a costly and time-consuming task, and it may become unfeasible
at all if the comparison needs to be performed frequently (e.g., as in the early stages of
research), or if it involves specialised skills (e.g., native speakers of an unfamiliar
language). Under these circumstances, comparing computer-generated text without
human intervention, e.g., using instead some form of language representation, becomes
a far more attractive strategy. And representing language in this way is precisely what
SLMs are good for.

 At the application development level, comparing different versions of a
computer-generated text may also help to decide which, among several competing
approaches, seems more promising. For example, assuming that (c)-(f) above were
produced by different systems (or variations of a single system under investigation),
early empirical data suggesting that (f) is best can help guiding the research efforts
towards that particular approach, and that should ideally occur long before an entire
system has been developed and evaluated. Once again, the use of SLMs may have a
great impact on how quickly these decisions can be made.

 Building a language model is a fairly straightforward task when using, for
example, language modelling toolkits such as CMU-Cambridge (Clarkson & Rosenfeld,
1994) or SRILM (Stolcke, 2002). We are however interested in encapsulating basic
SLM techniques in a high-level tool to aid the development and evaluation of NLP
applications in general while keeping a special regard for MT systems, and we would
like this to be presented in a more user-friendly fashion.

 In this paper we describe the ongoing implementation of a basic language
modelling tool of this kind called jNina. Using n-gram statistics as a basis, jNina is
intended to automatically compare text generated by multiple sources, allowing us to
quickly discard those alternatives that prove to be less valuable. Moreover, our tool
enables us to build new SLMs from scratch from any given corpora and evaluate them
at a glance, which is essential not only for our current interest in the development of
Statistical MT systems, but possibly to the wider research community working on many
other NLP fields.

 The rest of this paper is structured as follows. Section 2 provides a brief
introduction to the language modelling concepts that we have adopted. Section 3
describes our implemented work and Section 4 presents some preliminary evaluation
results. Section 5 summarizes our efforts so far and hints at the developments to follow.

1680

2. Background
 An SLM can be viewed as a probability distribution P(s) over a set of possible
sentences s representing how often each individual sentence occurs in the modelled
language. The most widely-used SLMs are based on n-grams, in which the probability
of a given word wi in a sentence is determined by the n-1 previous words (its so-called
recent history (Charniak, 1993)). In its simplest form, an SLM may compute
probabilities based on a maximum likelihood (ML) estimate with some allowance for
unseen instances. For example, in a trigram model, the maximum likelihood
conditional probability PML of a word wi given its two predecessors wi-2 and wi-1 is
defined as the counting (c) of occurrences of the trigram divided by the number of
occurrences of its bigram constituent:

PML (wi | wi-2 wi-1) = c (wi-2 wi-1 wi)
 __

 c (wi-2 wi-1)

 This estimator is of course useless if a given instance has not been observed in
the training data. In order to reserve some probability mass for unseen events (and also
to improve the model accuracy), a wide variety of smoothing techniques have been
proposed. Possibly the oldest of all, the Additive smoothing proposed by Lidstone in
1920 based on Laplace’s Law (Charniak, 1993; Chen & Goodman, 1999) simply adds
one unit to the observed counts, which effectively deals with the problem of data
sparseness but generally presents a poor performance for allowing too much of the
probability space to unseen events (Manning & Schültze, 2003).

 To improve the model accuracy is necessary to take into account additional
information about the data distribution. For example, the Good-Turing estimator (GT)
(Gale & Sampson, 1995) assumes the probability mass of unseen events to be n1 / N,
where N is the total of instances observed in the training data, and n1 is the number of
instances observed only once. The frequencies of the least frequent n-grams are
adjusted accordingly, usually up to a specified discount range limit beyond which the
adjustment is no longer significant1, and then renormalized to yield a probability
distribution. In the GT estimate every n-gram that occurs r times in the training data
will be assumed to occur r* times, which is defined as follows:

r* = (r + 1) * (nr + 1) / nr

 Despite the simplicity of this technique, the resulting probability distribution
successfully assigns non-zero estimates to unseen n-grams and is considered to be far
more accurate than many other estimators, especially for large amounts of training data
(Manning & Schültze, 2003).

 A considerable shortcoming of a pure GT estimate approach is that all unseen n-
grams will be assigned the same probability value. For example, in a trigram model all
three-word permutations that do not happen to occur explicitly in the training data will
be assigned the same fixed value. This means that a model built in this way cannot
accurately compare unobserved n-grams, even though some may be clearly more likely
then others. For example, assuming that none of the following trigrams have been

1 For higher frequency n-grams the ML estimate tends to become gradually more accurate.

1681

observed in the training data, the simple GT estimate cannot tell us that (i) is somewhat
less likely than (g) and (h).

g. where she went
h. she went where
i. she where went

 Because GT treats n-grams as atomic objects with no internal structure, this
technique is not normally seen in isolation, but rather used as a basis for more robust
techniques that take into account not only the n-grams themselves, but the combination
of lower order n-grams that compose them. Thus, when e.g., a trigram has not been
observed in the training data, at least we should be able to consider the frequencies of
its bigram components to have a clue on its estimate. In the above example, this insight
allows us to take into account that the bigram “she where” is itself highly unusual,
which helps conclude that (i) should be given a lower estimate than (g) and (h).

 Because n-grams of lower order are more frequent, this combined approach has
the added advantage of estimating probabilities from more data, and hence with more
accuracy. A well-known example of smoothing technique that combines multiple order
models is the Jelinek-Mercer smoothing (Jelinek & Mercer, 1980), which makes use of
held-out data to assign optimal weights to each n-gram component of the probability
estimate. For a survey of this and related techniques, see Chen & Goodman (1999).

 Having obtained n-gram estimates over a sufficiently large amount of training
data, the probability estimate of a whole sentence can be computed as the product of all
conditional probabilities of its constituents given each of their n-1 previous words. For
example, in a bigram (hence n = 2) model, we may estimate the probability of the
sentence “the dog came yesterday” as

 P(the dog came yesterday) = P(dog | the) * P(came | dog) * P(yesterday | came) 2

 Intuitively, higher probabilities suggest that the given sentence is more likely to
occur in the modelled language, and vice-versa. The consequences of this observation
alone should make clear the importance of SLMs in the development of NLP
applications in general.

 Different models (e.g., based on different training data and / or using different
smoothing techniques) may of course vary greatly in their ability to estimate
probabilities. One way of evaluating an individual model is by computing the product of
all probability estimates given to a particular test set. However, probability estimates do
not tell us how different SLMs compare among themselves. For example, a probability
estimate p1 = 0.000003 in one model may actually be higher than p2 = 0.000005 in a
different one. For that reason, SLMs are commonly evaluated through measures such as
cross-entropy and perplexity, both of which can be trivially derived from probability
estimates as follows.

2 For simplicity, in this example we omitted the special markers for beginning <BOS> and end of
sentence <EOS>, both of which would usually play a role in the estimate, e.g., the first conditional
probability of the example would actually be P(the | <BOS>).

1682

 Given the probability p(T) of a test set T containing w words, the cross-entropy
Hp(T) of a particular model on data T is

 Hp (T) = (-1 / w) * log 2 p(T)

and the related notion of perplexity PPp (T) is defined as

 PPp (T) = 2 Hp (T)

 Both cross-entropy and perplexity values attempt to describe the uncertainty of
the model (and hence lower entropy and perplexity values are better). To a certain
extent, it is still subject to debate which of the two measures best captures the behaviour
of an SLM. For details, we report to Charniak (1993) and Manning & Schütze (2003).
In the work described in the next section we follow Chen & Goodman (1999) and
compute cross-entropy values only.

3. Implementation work
Due to our general interest in statistical MT systems, we decided to implement a
general-purpose tool based on a number of customisable, reusable SLMs called jNina.
The purpose of this tool is twofold: first, we would like to quickly compare multiple
text sources (e.g., produced by various MT or other text-generating applications);
second, we would like to build new SLMs from scratch based on any corpora provided
by the user and have them readily evaluated.

 Our work is not to be confused with evaluation metrics for MT such as BLEU
(Papineni et. al, 2002), which is intended to measure the closeness between a gold
standard translation and multiple alternatives. To put it simply, BLEU measures the
quality of alternative translations, whereas we are only interested in measuring the
quality of any text (be it a translation or not) with respect to a language model.
Regarding the ability to build new SLMs, jNina is intended to work in a way not unlike
existing SLM toolkits (Clarkson & Rosenfeld, 1994; Stolcke, 2002). In our work,
however, we decided to provide a more user-friendly environment and, in a future
development stage, a number of special features to aid the development of MT and
other text-generating applications.

 As a first step towards the implementation of more robust SLMs, the current
release of jNina provides three basic n-gram models (namely, unigrams3, bigrams and
trigrams)4 using simple Good-Turing estimate (Gale & Sampson, 1995) as the
underlying smoothing technique, and a fourth model type that combines these using a
customisable weight-based estimator. In the combined model, the weights assigned to
trigrams, bigrams and unigrams are presently defined by the user by hand. In the future
we intend to implement an algorithm for automatically learning their optimal values
from held-out data as in, e.g., Jelinek & Mercer (1980).

3 Despite the simplicity of these models, it should be noticed that even simple unigram statistics may play
a key role in complex NLP tasks, e.g., the automatic evaluation of text summaries in (Lin & Hovy, 2003).
4 Although the use of fourgrams has become popular in recent years, we found that presently our training
corpus is not sufficiently large to support such models.

1683

 The program is divided into two basic modules: SLM generation and evaluation.
A screenshot of the ‘Model Generation’ tab is shown in Figure 1.

Figure 1. Model Generation

 The model generation works as follows. A user (e.g., a researcher interested in
comparing multiple MT approaches) may select an existing SLM to be evaluated
against a number of sentences (or text files), or, alternatively, may decide to create new
models from scratch by providing their relevant parameters (e.g., the discount range
parameter for Good-Turing estimates etc). In the latter case (i.e., when building SLMs
from scratch) the program will search all text documents found in its “\corpus” folder
and use them as training data to build new unigram, bigram and trigram models
according to the specification. Once generated, the models will be saved to individual
files and may be applied to any text specified by the user.

 A screenshot of the ‘Model Evaluation’ tab is shown in Figure 2. In this module
the user must provide some test data (either as a sentence typed directly in the GUI, or
as a filename of a document containing the input) and selects an existing model to be
evaluated against it. The tool is currently able to read only raw text files without
markup. Sentence boundaries are detected by means of simple heuristics based on
punctuation marks and a customisable lists of special characters.

1684

Figure 2. Model Evaluation

 Once the user hits the ‘Evaluate’ button, jNina computes the cross-entropy
estimates for each input sentence and displays the results. At the end of the evaluation,
the measure of cross-entropy for the entire set of sentences is also displayed, and the
evaluation output is saved to a text file. This evaluation can be useful in two ways: by
keeping a fixed SLM under evaluation whilst varying the input text, it is possible to
compare alternative text sources as required, for example, in our current research on
MT systems. Conversely, by choosing a different SLM whilst keeping a fixed input
text, it is possible to evaluate multiple models and determine which one works best.
This is generally useful, for example, to the researcher interested in building her own
SLM for a particular NLP application or language.

4. Preliminary Evaluation
As a preliminary assessment of our work, we carried out a simple test to illustrate how
well our SLMs were able to predict the likelihood of random strings made out of
permutations of a given input sentence. For this purpose, we took a small collection of
four Jane Austen’s novels5 containing 485,409 words in total. For ease of processing,
all words were set to lower case and special characters such as the underline symbol or
dots as in “Mrs.” were removed.

 One single sentence was randomly removed from the text, namely, “I see the
difference plain enough”, and set apart to build our test data. The reminder of the text
was used as training data to build a simple bigram SLM using GT smoothing6.

5 “Emma”, “Pride and Prejudice”, “Sense and Sensibility” and “Persuasion”, all taken from the
Gutenberg project website (http://www.gutenberg.org).
6 Our present data set was not sufficiently large for building a useful trigram model, or a combination of
these and lower order n-grams.

1685

 By shuffling the word order of the selected sentence, we generated all its
possible (6! = 720) permutations. These included the original string itself, a few
(possibly acceptable) variations such as “I plain enough see the difference” and a
majority of ungrammatical permutations.

 Using the set of 720 unseen sentences as test data, we would like our bigram
model to assign low cross-entropy values to the starting sentence and its well-formed
permutations, and progressively higher values to the less acceptable ones. The
following Table 1 summarizes our findings.

Table 1. Most likely sentences according to the Bigram model
of Austen’s novels

test sentence HP

I see the difference plain enough
plain enough I see the difference
I see the plain enough difference
the difference plain enough I see
I see the difference enough plain
enough I see the difference plain
the plain enough I see difference
I see the plain difference enough
see the difference plain enough I
difference I see the plain enough
the difference I see plain enough
…

1
2
3
4
5
6
7
8
9

10
11
…

6.29
6.80
7.16
7.43
8.11
8.14
8.19
8.36
8.48
8.56
8,61
…

difference the i enough see plain 720 16.24

 Not surprisingly, the original sentence (#1) fares best of all, followed by three
acceptable variations (#2-4). From sentence (#5) on there is a trend towards
progressively more problematic instances7, up to the sentence that scored worst of all
(#720) “difference the I enough see plain”.

 In an informal inspection of the entire 720-sentences set we could not find any
acceptable instances beyond sentence #14 (not shown). Such seemingly high
concentration of well-formed sentences on the top positions may suggest that our small
SLM is indeed able to rate sentences closest to well-formed English much higher than
their ill-formed permutations. We are however are aware that more evidence is needed
to substantiate this claim, and that the definition of what counts as a ‘well-formed’
sentence needs to be made clear, e.g., making use of human judges and to compare their
estimates to ours. This is precisely what we intend to do once we have built a more
powerful SLM using a combination of multiple order n-grams and, crucially, a much
larger training data set.

7 Given the small amount of training data, however, the distinction between problematic and
unproblematic is not clear-cut. For example, we observe that sentence #11 is still rather acceptable.

1686

5. Final Remarks and Future Work
This paper described our ongoing efforts to implement jNina, a general-purpose tool for
statistical language modelling. The work is mainly motivated by the need to quickly
compare the output of multiple MT systems but, in a broader sense, is expected to
support the development of various NLP applications, ranging from text interpretation
to generation.

 In its current stage our tool is still very similar (and indeed inferior) to existing
language model toolkits. However, a number of enhancements to aid the development
of statistical MT systems are under way. These include, for example, the ability to
compare multiple documents in a single task and the selection of the winning translation
of each sentence.

 To illustrate part of what remains to be done, the following Figure 3 presents a
sketch (in Portuguese) of the planned implementation work. Each text column is
intended to display the evaluation of a given source (e.g., the outputs of multiple MT
systems or sentences provided by the user) and to highlight the winning sentence of
each group8. At the bottom, the number of victories of each source and the
corresponding percentage will also be presented, possibly followed by additional
evaluation statistics (to be defined).

Figure 3. A sketch of the MT-evaluation module (to be implemented)

 Besides the above implementation task, we are now in the process of collecting
larger corpora to build higher-quality SLMs, and this will be followed by a
comprehensive evaluation work. For this purpose, we are developing pre-processing
tools required to handle the 40-million words NILC corpus of Portuguese9. Other
developments to follow include the implementation of basic techniques for treatment of
out-of-vocabulary words, and a wider choice of smoothing techniques.

8 In this tentative example we chose to highlight the sentence of lowest probability estimate in each line.
9 http://nilc.icmc.sc.usp.br/nilc/tools/corpora.htm

1687

Acknowledgments
The first author acknowledges support from the “Ensinar com Pesquisa” grant of the
University of São Paulo (USP / EACH). The second author is partially supported by
FAPESP grant number 2006/03941-7.

References
Brown, P.F. et al. (1990) A statistical approach to machine translation. Computational

Linguistics vol. 16, pp.79-85.

Brown, P.F. et al. (1993) The mathematics of statistical machine translation: Parameter
estimation. Computational Linguistics, Vol. 19, pp.263-311.

Charniak, E. (1993) Statistical Language Learning. Cambridge: MIT Press.

Chen, S.F. and J. Goodman (1999) An empirical study of smoothing techniques for
language modeling. Computer Speech and Language 13, pp.359-394.

Clarkson, P. and R. Rosenfeld (1994) The CMU statistical language modeling toolkit as
it is used in the 1994 ARPA CSR evaluation. Proc. of the Spoken Language Systems
Technology Workshop.

Gale, W.A. and G. Sampson (1995) Good-Turing frequency estimation without tears.
Journal of Quantitative Linguistics 2:217-237.

Jelinek, F. and R. L. Mercer (1980) Interpolated estimation of Markov source
parameters from sparse data. Proc. of the Workshop ‘Pattern Recognition in
Practice’. Amsterdam, The Netherlands. North-Holland, pp.381-397.

Lin, C-Y. & Hovy, E. (2003) Automatic Evaluation of Summaries Using N-gram Co-
Occurrence Statistics. Human Technology Conference HLT-NAACL-2003.
Edmonton, Canada, June.

Manning, C. D. and Schütze, H. (2003) Foundations of Statistical Natural Language
Processing. Cambridge: MIT Press.

Papineni, K., S. Roukos, T. Ward and W-J. Zhu (2002) BLEU: a Method for Automatic
Evaluation of Machine Translation. 40th Annual Meeting of the Association for
Computational Linguistics, pp. 311-318. Philadelphia, PA.

Stolcke, A. (2002) SRILM - An extensible language modeling toolkit. International
Conference on Spoken Language Processing, vol. 2, (Denver, CO), pp. 901-904,
September.

1688

	1. Introduction
	3. Implementation work
	4. Preliminary Evaluation
	 5. Final Remarks and Future Work
	Acknowledgments
	References

