
  

A Language Modelling Tool for Statistical NLP 

Daniel Bastos Pereira, Ivandré Paraboni 

Escola de Artes, Ciências e Humanidades – Universidade de São Paulo (EACH / USP) 
Av.Arlindo Bettio, 1000 - 03828-000, São Paulo, Brazil. 

{daniel.bastos,ivandre}@usp.br

Abstract. In recent years the use of statistical language models (SLMs) has 
become widespread in most NLP fields. In this work we introduce jNina, a 
basic language modelling tool to aid the development of Machine Translation 
systems and many other text-generating applications. The tool allows for the 
quick comparison of multiple text outputs (e.g., alternative translations of a 
single source) based on a given SLM, and enables the user to build and 
evaluate her own SLMs from any corpora provided.  

1. Introduction 
Consider a Portuguese native speaker who wants to say (in English) that she is thinking 
of buying a new car, but who is not sure about the verb choice. In that case, a 
reasonable (and helplessly wrong) guess would be to mimic the equivalent Portuguese 
structure “Eu estou querendo comprar um carro novo” to produce (a) instead of the 
correct form (b): 

a. I am wanting to buy a new car. 
b. I am thinking of buying a new car / I am considering buying a new car. 

 What actually makes (b) more appropriate than (a) is immaterial to the present 
discussion, but there is one thing that we can safely assume to be true: very frequently 
we hear “I am” being followed by verb forms such as “thinking” or “considering”, but 
very seldom we hear “I am” being followed by “wanting”, even though “wanting” is a 
proper verb form in its own right.  

 The simple idea that some word sequences are more frequent than others has 
lead to the concept of language modelling that is now part of mainstream NLP research. 
In particular, Statistical Language Models (SLMs) based on n-grams are now widely 
used in most NLP fields, not to mention the large amount of work on Statistical MT in 
which they play a central role (e.g., Brown et. al, 1990; 1993). Besides their power to 
represent some crucial aspects of language, SLMs are quick and easy to implement, and 
do not require the labour-intensive development of NLP resources such as dictionaries 
or grammars, making them ideal for research in relatively resource-poor languages such 
as Portuguese. 

 The uses of SLMs stretch well beyond the design of components of NLP 
applications. For example, Machine Translation (MT) systems and many other text-
generating applications often make use of overgeneration techniques to produce a large 
number of versions of the output text, from which inappropriate (e.g., ill-formed or 
ungrammatical) alternatives are filtered out to arrive at the desired output. Thus, in 
order to decide how to translate e.g., the NP “Mao’s red book” to Portuguese given a 
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standard bilingual dictionary, we may simply generate all possible permutations of the 
individual NP constituents and compare them to select the one that closest ‘resembles’ 
the target language, as in (f) below:  

c. o de Mao vermelho livro    
d. o vermelho de Mao livro 
e. o livro de Mao vermelho 
f. o livro vermelho de Mao 

 There are of course many ways in which we may decide that (f) is ‘better’. One 
such way is by asking human evaluators to do so within a certain level of agreement. 
This may however be a costly and time-consuming task, and it may become unfeasible 
at all if the comparison needs to be performed frequently (e.g., as in the early stages of 
research), or if it involves specialised skills (e.g., native speakers of an unfamiliar 
language). Under these circumstances, comparing computer-generated text without 
human intervention, e.g., using instead some form of language representation, becomes 
a far more attractive strategy. And representing language in this way is precisely what 
SLMs are good for.  

 At the application development level, comparing different versions of a 
computer-generated text may also help to decide which, among several competing 
approaches, seems more promising. For example, assuming that (c)-(f) above were 
produced by different systems (or variations of a single system under investigation), 
early empirical data suggesting that (f) is best can help guiding the research efforts 
towards that particular approach, and that should ideally occur long before an entire 
system has been developed and evaluated. Once again, the use of SLMs may have a 
great impact on how quickly these decisions can be made. 

  Building a language model is a fairly straightforward task when using, for 
example, language modelling toolkits such as CMU-Cambridge (Clarkson & Rosenfeld, 
1994) or SRILM (Stolcke, 2002). We are however interested in encapsulating basic 
SLM techniques in a high-level tool to aid the development and evaluation of NLP 
applications in general while keeping a special regard for MT systems, and we would 
like this to be presented in a more user-friendly fashion.  

 In this paper we describe the ongoing implementation of a basic language 
modelling tool of this kind called jNina.  Using n-gram statistics as a basis, jNina is 
intended to automatically compare text generated by multiple sources, allowing us to 
quickly discard those alternatives that prove to be less valuable. Moreover, our tool 
enables us to build new SLMs from scratch from any given corpora and evaluate them 
at a glance, which is essential not only for our current interest in the development of 
Statistical MT systems, but possibly to the wider research community working on many 
other NLP fields.   

 The rest of this paper is structured as follows. Section 2 provides a brief 
introduction to the language modelling concepts that we have adopted. Section 3 
describes our implemented work and Section 4 presents some preliminary evaluation 
results. Section 5 summarizes our efforts so far and hints at the developments to follow. 

1680



  

2. Background 
 An SLM can be viewed as a probability distribution P(s) over a set of possible 
sentences s representing how often each individual sentence occurs in the modelled 
language. The most widely-used SLMs are based on n-grams, in which the probability 
of a given word wi in a sentence is determined by the n-1 previous words (its so-called 
recent history (Charniak, 1993)). In its simplest form, an SLM may compute 
probabilities based on a maximum likelihood (ML) estimate with some allowance for 
unseen instances. For example, in a trigram model, the maximum likelihood  
conditional probability PML of a word wi given its two predecessors wi-2 and wi-1 is 
defined as the counting (c) of occurrences of the trigram divided by the number of 
occurrences of its bigram constituent: 

PML (wi | wi-2 wi-1 ) = c (wi-2 wi-1 wi ) 
                                   __________________________________________ 

                  c (wi-2 wi-1) 

 This estimator is of course useless if a given instance has not been observed in 
the training data. In order to reserve some probability mass for unseen events (and also 
to improve the model accuracy), a wide variety of smoothing techniques have been 
proposed. Possibly the oldest of all, the Additive smoothing proposed by Lidstone in 
1920 based on Laplace’s Law (Charniak, 1993; Chen & Goodman, 1999) simply adds 
one unit to the observed counts, which effectively deals with the problem of data 
sparseness but generally presents a poor performance for allowing too much of the 
probability space to unseen events (Manning & Schültze, 2003). 

 To improve the model accuracy is necessary to take into account additional 
information about the data distribution.  For example, the Good-Turing estimator (GT) 
(Gale & Sampson, 1995) assumes the probability mass of unseen events to be n1 / N, 
where N is the total of instances observed in the training data, and n1 is the number of 
instances observed only once. The frequencies of the least frequent n-grams are 
adjusted accordingly, usually up to a specified discount range limit beyond which the 
adjustment is no longer significant1, and then renormalized to yield a probability 
distribution. In the GT estimate every n-gram that occurs r times in the training data 
will be assumed to occur r* times, which is defined as follows: 

r* = (r + 1) * (nr + 1) / nr 

 Despite the simplicity of this technique, the resulting probability distribution 
successfully assigns non-zero estimates to unseen n-grams and is considered to be far 
more accurate than many other estimators, especially for large amounts of training data 
(Manning & Schültze, 2003).  

 A considerable shortcoming of a pure GT estimate approach is that all unseen n-
grams will be assigned the same probability value. For example, in a trigram model all 
three-word permutations that do not happen to occur explicitly in the training data will 
be assigned the same fixed value. This means that a model built in this way cannot 
accurately compare unobserved n-grams, even though some may be clearly more likely 
then others. For example, assuming that none of the following trigrams have been 

                                                 
1 For higher frequency n-grams the ML estimate tends to become gradually more accurate. 
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observed in the training data, the simple GT estimate cannot tell us that (i) is somewhat 
less likely than (g) and (h). 

g. where she went 
h. she went where 
i. she where went 

 Because GT treats n-grams as atomic objects with no internal structure, this 
technique is not normally seen in isolation, but rather used as a basis for more robust 
techniques that take into account not only the n-grams themselves, but the combination 
of lower order n-grams that compose them. Thus, when e.g., a trigram has not been 
observed in the training data, at least we should be able to consider the frequencies of 
its bigram components to have a clue on its estimate. In the above example, this insight 
allows us to take into account that the bigram “she where” is itself highly  unusual, 
which helps conclude that (i) should be given a lower estimate than (g) and (h).  

 Because n-grams of lower order are more frequent, this combined approach has 
the added advantage of estimating probabilities from more data, and hence with more 
accuracy. A  well-known example of smoothing technique that combines multiple order 
models is the Jelinek-Mercer smoothing (Jelinek & Mercer, 1980), which makes use of 
held-out data to assign optimal weights to each n-gram component of the probability 
estimate. For a survey of this and related techniques, see Chen & Goodman (1999). 

 Having obtained n-gram estimates over a sufficiently large amount of training 
data, the probability estimate of a whole sentence can be computed as the product of all 
conditional probabilities of its constituents given each of their n-1 previous words. For 
example, in a bigram (hence n = 2) model, we may estimate the probability of the 
sentence “the dog came yesterday” as  

 P(the dog came yesterday) = P(dog | the) * P(came | dog) * P(yesterday | came) 2

 Intuitively, higher probabilities suggest that the given sentence is more likely to 
occur in the modelled language, and vice-versa. The consequences of this observation 
alone should make clear the importance of SLMs in the development of NLP 
applications in general. 

 Different models (e.g., based on different training data and / or using different 
smoothing techniques) may of course vary greatly in their ability to estimate 
probabilities. One way of evaluating an individual model is by computing the product of 
all probability estimates given to a particular test set. However, probability estimates do 
not tell us how different SLMs compare among themselves. For example, a probability 
estimate p1 = 0.000003 in one model may actually be higher than p2 = 0.000005 in a 
different one. For that reason, SLMs are commonly evaluated through measures such as 
cross-entropy and perplexity, both of which can be trivially derived from probability 
estimates as follows.  

                                                 
2 For simplicity, in this example we omitted the special markers for beginning <BOS> and end of 
sentence <EOS>, both of which would usually play a role in the estimate, e.g., the first conditional 
probability of the example would actually be P( the | <BOS> ). 
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 Given the probability p(T) of a test set T containing w words, the cross-entropy 
Hp(T) of a particular model on data T is 

 Hp (T) = (-1 / w ) * log 2 p(T)      

and the related notion of perplexity PPp (T) is defined as  

 PPp (T) = 2 Hp (T) 

 Both cross-entropy and perplexity values attempt to describe the uncertainty of 
the model (and hence lower entropy and perplexity values are better). To a certain 
extent, it is still subject to debate which of the two measures best captures the behaviour 
of an SLM. For details, we report to Charniak (1993) and Manning & Schütze (2003). 
In the work described in the next section we follow Chen & Goodman (1999) and 
compute cross-entropy values only.  

3. Implementation work 
Due to our general interest in statistical MT systems, we decided to implement a 
general-purpose tool based on a number of customisable, reusable SLMs called jNina. 
The purpose of this tool is twofold: first, we would like to quickly compare multiple 
text sources (e.g., produced by various MT or other text-generating applications); 
second, we would like to build new SLMs from scratch based on any corpora provided 
by the user and have them readily evaluated.  

 Our work is not to be confused with evaluation metrics for MT such as BLEU 
(Papineni et. al, 2002), which is intended to measure the closeness between a gold 
standard translation and multiple alternatives. To put it simply, BLEU measures the 
quality of alternative translations, whereas we are only interested in measuring the 
quality of any text (be it a translation or not) with respect to a language model. 
Regarding the ability to build new SLMs, jNina is intended to work in a way not unlike 
existing SLM toolkits (Clarkson & Rosenfeld, 1994; Stolcke, 2002). In our work, 
however, we decided to provide a more user-friendly environment and, in a future 
development stage, a number of special features to aid the development of MT and 
other text-generating applications.    

 As a first step towards the implementation of more robust SLMs, the current 
release of jNina provides three basic n-gram models  (namely, unigrams3, bigrams and 
trigrams)4 using simple Good-Turing estimate (Gale & Sampson, 1995) as the 
underlying smoothing technique, and a fourth model type that combines these using a 
customisable weight-based estimator. In the combined model, the weights assigned to 
trigrams, bigrams and unigrams are presently defined by the user by hand. In the future 
we intend to implement an algorithm for automatically learning their optimal values 
from held-out data as in, e.g., Jelinek & Mercer (1980). 

                                                 
3 Despite the simplicity of these models, it should be noticed that even simple unigram statistics may play 
a key role in complex NLP tasks, e.g., the automatic evaluation of text summaries in (Lin & Hovy, 2003). 
4 Although the use of fourgrams has become popular in recent years, we found that presently our training 
corpus is not sufficiently large to support such models. 

1683



  

 The program is divided into two basic modules: SLM generation and evaluation. 
A screenshot of the ‘Model Generation’ tab is shown in Figure 1. 

 
Figure 1. Model Generation 

 The model generation works as follows. A user (e.g., a researcher interested in 
comparing multiple MT approaches) may select an existing SLM to be evaluated 
against a number of sentences (or text files), or, alternatively, may decide to create new 
models from scratch by providing their relevant parameters (e.g., the discount range 
parameter for Good-Turing estimates etc).  In the latter case (i.e., when building SLMs 
from scratch) the program will search all text documents found in its “\corpus” folder 
and use them as training data to build new unigram, bigram and trigram models 
according to the specification. Once generated, the models will be saved to individual 
files and may be applied to any text specified by the user.  

 A screenshot of the ‘Model Evaluation’ tab is shown in Figure 2. In this module 
the user must provide some test data (either as a sentence typed directly in the GUI, or 
as a filename of a document containing the input) and selects an existing model to be 
evaluated against it. The tool is currently able to read only raw text files without 
markup. Sentence boundaries are detected by means of simple heuristics based on 
punctuation marks and a customisable lists of special characters.  
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Figure 2. Model Evaluation 

  Once the user hits the ‘Evaluate’ button, jNina computes the cross-entropy 
estimates for each input sentence and displays the results.  At the end of the evaluation, 
the measure of cross-entropy for the entire set of sentences is also displayed, and the 
evaluation output is saved to a text file. This evaluation can be useful in two ways: by 
keeping a fixed SLM under evaluation whilst varying the input text, it is possible to 
compare alternative text sources as required, for example, in our current research on 
MT systems. Conversely, by choosing a different SLM whilst keeping a fixed input 
text, it is possible to evaluate multiple models and determine which one works best. 
This is generally useful, for example, to the researcher interested in building her own 
SLM for a particular NLP application or language. 

4. Preliminary Evaluation 
As a preliminary assessment of our work, we carried out a simple test to illustrate how 
well our SLMs were able to predict the likelihood of random strings made out of 
permutations of a given input sentence. For this purpose, we took a small collection of 
four Jane Austen’s novels5 containing 485,409 words in total. For ease of processing, 
all words were set to lower case and special characters such as the underline symbol or 
dots as in “Mrs.” were removed.  

 One single sentence was randomly removed from the text, namely, “I see the 
difference plain enough”, and set apart to build our test data. The reminder of the text 
was used as training data to build a simple bigram SLM using GT smoothing6.   

                                                 
5 “Emma”, “Pride and Prejudice”, “Sense and Sensibility” and “Persuasion”, all taken from the 
Gutenberg project website (http://www.gutenberg.org). 
6 Our present data set was not sufficiently large for building a useful trigram model, or a combination of 
these and lower order n-grams. 
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 By shuffling the word order of the selected sentence, we generated all its 
possible (6! = 720) permutations. These included the original string itself, a few 
(possibly acceptable) variations such as “I plain enough see the difference” and a 
majority of ungrammatical permutations.   

 Using the set of 720 unseen sentences as test data, we would like our bigram 
model to assign low cross-entropy values to the starting sentence and its well-formed 
permutations, and progressively higher values to the less acceptable ones. The 
following Table 1 summarizes our findings. 

Table 1. Most likely sentences according to the Bigram model  
of Austen’s novels 

# test sentence HP  

 

I see the difference plain enough 
plain enough I see the difference 
I see the plain enough difference 
the difference plain enough I see 
I see the difference enough plain 
enough I see the difference plain 
the plain enough I see difference 
I see the plain difference enough 
see the difference plain enough I 
difference I see the plain enough 
the difference I see plain enough 
… 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
… 

6.29 
6.80 
7.16 
7.43 
8.11 
8.14 
8.19 
8.36 
8.48 
8.56 
8,61 
… 

difference the i enough see plain 720 16.24 

 Not surprisingly, the original sentence (#1) fares best of all, followed by three 
acceptable variations (#2-4). From sentence (#5) on there is a trend towards 
progressively more problematic instances7, up to the sentence that scored worst of all 
(#720) “difference the I enough see plain”.    

 In an informal inspection of the entire 720-sentences set we could not find any 
acceptable instances beyond sentence #14 (not shown). Such seemingly high 
concentration of well-formed sentences on the top positions may suggest that our small 
SLM is indeed able to rate sentences closest to well-formed English much higher than 
their ill-formed permutations. We are however are aware that more evidence is needed 
to substantiate this claim, and that the definition of what counts as a ‘well-formed’ 
sentence needs to be made clear, e.g., making use of human judges and to compare their 
estimates to ours.  This is precisely what we intend to do once we have built a more 
powerful SLM using a combination of multiple order n-grams and, crucially, a much 
larger training data set.  

                                                 
7 Given the small amount of training data, however, the distinction between problematic and 
unproblematic is not clear-cut. For example, we observe that sentence #11 is still rather acceptable. 
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5. Final Remarks and Future Work 
This paper described our ongoing efforts to implement jNina, a general-purpose tool for 
statistical language modelling. The work is mainly motivated by the need to quickly 
compare the output of multiple MT systems but, in a broader sense, is expected to 
support the development of various NLP applications, ranging from text interpretation 
to generation.  

 In its current stage our tool is still very similar (and indeed inferior) to existing 
language model toolkits. However, a number of enhancements to aid the development 
of statistical MT systems are under way. These include, for example, the ability to 
compare multiple documents in a single task and the selection of the winning translation 
of each sentence.    

 To illustrate part of what remains to be done, the following Figure 3 presents a 
sketch (in Portuguese) of the planned implementation work. Each text column is 
intended to display the evaluation of a given source (e.g., the outputs of multiple MT 
systems or sentences provided by the user) and to highlight the winning sentence of 
each group8. At the bottom, the number of victories of each source and the 
corresponding percentage will also be presented, possibly followed by additional 
evaluation statistics (to be defined). 

 
Figure 3. A sketch of the MT-evaluation module (to be implemented) 

 Besides the above implementation task, we are now in the process of collecting 
larger corpora to build higher-quality SLMs, and this will be followed by a 
comprehensive evaluation work. For this purpose, we are developing pre-processing 
tools required to handle the 40-million words NILC corpus of Portuguese9. Other 
developments to follow include the implementation of basic techniques for treatment of 
out-of-vocabulary words, and a wider choice of smoothing techniques.  

                                                 
8 In this tentative example we chose to highlight the sentence of lowest probability estimate in each line. 
9 http://nilc.icmc.sc.usp.br/nilc/tools/corpora.htm 
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