
Extracting Visions
from Textual Requirements Documents

Miriam Sayão
�

and Carlos A. Prolo
�

�
Faculdade de Informática, PUCRS,

Av. Ipiranga, 6681, prédio 32, sala 505
90619-900 Porto Alegre, RS, Brazil

�
miriam,prolo � @inf.pucrs.br

Abstract. Software requirements are frequently written as a document in nat-
ural language. For large systems it is difficult to index them so that we can
extract information concerning a particular point of view of interest. Indeed
they frequently come with no interesting indexing system. In this paper we in-
vestigate the use of information retrieval techniques based on natural language
processing to produce indexing information for requirements documents written
in natural language. We focus on two aspects: one is how to retrieve the collec-
tion of requirements related to a particular user-oriented view of interest. The
other is how to produce a suitable indexing system for the requirements docu-
ment, which an expert software engineer would see as a general and natural way
of accessing the document for purposes ranging from understanding the system
to maintenance, to requirements verification and validation.

1. Introduction
When building a software system one initial step is to define the System Requirements
Specification (SRS) [Sommerville 2001], a document containing the requirements the
software will have to attend. These requirements are usually written in natural language
in one of several standards ways, such as requirement sentences – a piece of text in
natural language containing one or more sentences – or the more structured use cases
[Quatrani 1998], among many others [Sommerville 2001].

The resulting document generally has some internal structure, that reflects the
view of the software engineer, which is not necessarily the view of the clients or users.
Moreover, the same stakeholder may actually have different structuring views at different
moments, depending on their particular purpose at that moment. Later in the develop-
ment stage and when it is effectively in use one may want to scrutinize over the document
either manually or automatically to retrieve information in systematic ways. The reasons
range from simply trying to understand what the system is about to verification/validation
(V&V) activities. In these cases we want to organize the requirements document accord-
ing to what is covered in there or by pre-selecting a topic – which may even be found not
to be covered in the document for the misfortune of the stakeholder.

1699

A problem then arises when the document structure is not adequate to let the stake-
holder to extract the particular information he wants at a particular moment. For instance
sometimes the document is only split into functional and non-functional requirements,
and one may want to obtain information concerning specifically safety of the system, or
some particular functional issue, such as flying tickets, or purchases. When these doc-
uments are large, to obtain this information may be very hard. This is the problem we
tackle in this paper.

Following [Palmer and Liang 1992], we call vision a subset of requirements that
share characteristics or properties of the system. The vision may have an associated term
or index that describe the commonality of the requirements in the subset, so that one can
understand what the vision is about without having to read the requirements. An indexing
system for the requirements document is a set of visions – that is, a set of subsets of
requirements – with corresponding indexes.

Throughout this paper we will assume that each requirement is a linear sequence
of natural language sentences. 1

This paper describes ongoing work towards providing the stakeholders the follow-
ing capabilities:

1. We want to give the stakeholders the ability to retrieve information about certain
views of interest, each view being given by a natural language term, such as safety
or booking tickets. That means, given a set of indexes, we want to generate the
full corresponding indexing system.

2. We want to be able to automatically produce a suitable indexing system for the
requirements document, which an expert software engineer, or even a client or
user, would see as a general and natural way of accessing that document. There are
two possible ways of doing this. One is to first automatically find an appropriate
set of indexing terms, and from these, to generate the indexing system, as above.
The other is to apply clustering techniques from the IR literature 2 to directly
define the visions (i.e., the subsets of requirements). And then in a subsequent step
we might try to infer the corresponding indexing terms, if we are lucky enough
that such terms exist.
A very relevant issue in the second approach has to do with the restrictions to the
kind of clustering required. Each cluster of requirements should cover one relevant
theme of the document. Therefore, unfortunately, the set of clusters cannot be
a partition, since requirements may carry information regarding more than one
theme, so clusters are not to be disjoint.

1We assume that whatever standard has originally been used to write the requirement, it can be converted
in such a list of sentences, with some possible loss in meaning. We will not discuss this point further in this
paper.

2In the IR terminology, clustering is the process of grouping documents in related subsets. If we see
each of our requirements as a document, we can apply clustering techniques to structure our requirements
document into a set of visions.

1700

3. One may claim that the previous capabilities have inherent problems from their
conception. There might not be a unique set of clusters, or equivalently a unique
set of topics that best characterize the document. Indeed we believe there is not.
It is conceivable that for different stakeholders different organizations of the doc-
ument may be more appropriate. For instance, the granularity problem. We may
have sets of topics with a few general terms or larger ones, more granular with
more specific terms. Although there are many possible issues one can rise on
behalf of this discussion, we focus here on the capability of iteratively (and inter-
actively) generating the organization of the document. We want the stakeholder to
be able to start with an automatically generated set of clusters and respective top-
ics – from capability 2 above, – and then to progressively adjust the outcome by
including/removing topics iteratively. Notice that the iterative steps are therefore
applications of capability 1.

At first sight one can think that the solution is merely to use the standard tech-
niques already described in the Information Retrieval (IR) literature. Or perhaps even
using tools already available. Capability 1 is studied in the IR literature under the name
of text categorization (or text classification or document categorization 3. Capability 2
involves text/document clustering, if we obtain the sets of clusters directly; information
extraction, to obtain the terms either from the whole document of requirements or from
the clusters; and again, text/document categorization, if we find the clusters from the in-
dexing terms. In the rest of this introduction we motivate our research arguing that things
are not so simple. In subsequent sections we describe the experiments we have tried so
far to achieve our stated goals.

We can not use general classifiers: One could look for already existent general classi-
fiers and apply them to the set of requirements. That does not work for two main reasons.
The indexing terms appropriate for each requirements document is certainly different
from each other and hence different in general from any pre-existing classifier. Secondly,
the meaning of the indexing terms in each system is particular to that system. For instance,
in general document classifiers, one would expect the term safety to be associated with
jail, robbery, gates with remote control. Conversely in some software systems it could
be attached to a requirement that the system do not lose integrity in case a transaction is
aborted in the middle.

We can not use supervised learning: Most of the work on efficient text categorization
is supervised learning [Sebastiani 2002]. A classifier is automatically induced from a
large amount of data annotated with the correct answer. Well we do not have that. We are
given as input a requirements document of a particular system each time. Of course we

3In our context the word document in the expressions document categorization and document clustering
refers to a single requirement – not to be confused with the “document” that contains all the requirements.

1701

cannot count on having a pre-classified subset of requirements. And neither can we pre-
classify one or a set of requirement documents to use as training data, since the resulting
classifier would not be appropriate for any other system as has been just argued. Now,
work on unsupervised learning is much harder, the results are not nearly as effective as
supervised learning and the literature is scarcer.

We need overlapping clusters: If on the one hand the work with text categorization
has been mostly supervised, on the other hand, clustering algorithms, which are typically
unsupervised, generally generate a partition as outcome, that is, the clusters are non-
overlapping. But as we argued before, requirements can be related to more than one topic
of interest. Hence we need non-overlapping text clustering algorithms.

2. Related Work

There are very few works on this subject. [Palmer and Liang 1992] first pointed out the
need for grouping requirements for V&V activities. They idealized a clustering algorithm
for verbs, called Two Tiered Clustering (TTC), focusing therefore on actions. The algo-
rithm starts with the set of verbs in the document and uses a thesaurus composed by verbs
extracted from previous work on an operating systems project. It was as early attempt
involving a lot of manual work. No quantitative results were provided.

The works of [Hsia and Gupta 1992] and, more recently, [Chen et al. 2005], were
based on looking at shared resources. [Hsia and Gupta 1992] manually identifies Abstract
Data Types (ADT) corresponding to objects which are referred to in the requirements
(either as modified or accessed). Requirements are then grouped based on the sharing of
these ADT’s. They were aiming at incremental software development, and the clusters
were intended to point out the increments. The approach requires an intertwining of
the specification aspects (requirements definition) with the development (design) phase,
where the ADT’s belong to. 4

In [Chen et al. 2005] an undirected graph is built in which the requirements are
the nodes. They identify five types of relationships between requirements based on how
they manipulate shared resources. Each kind of relationship is assigned a weight. For
any pair of requirements in one of these relationships, an edge is added to the graph, with
the weight of the relationship. The clusters are then defined based on connectivity among
nodes, taking the weights of the edges into account. It is a semi-automatic approach. The
authors are aware of the need of human intervention. There is no mention on how the
resources are identified. Apparently they are manually defined from obvious functional
objects of the system (e.g., checkout lists, books, users, ...). Clearly a human has to judge
which relationship applies to each pair of nodes.

Besides the particular limitations of each individual approach, they share one

4In their case they had actually to bring the ADT’s definition forward to the requirements phase.

1702

drawback: they attend only developer needs. They are not available to the other stake-
holders, in the sense that they can not impose their point of view.

3. Experiments 5

The experiments we discuss in this paper have been run over a large requirements docu-
ment from a well-established commercial software company (Tlantic Sistemas de Informa-
ção). The document is for an information system in the area of tourism, separating func-
tional and non-functional requirements. There are 169 requirements, four of these being
non-functional, amounting to 29.554 words – average of about 180 words per require-
ment. The document is written in European Portuguese.

3.1. Experiment 1: A Simple Way to Classify the Documents Given a Set of
Indexing Terms of the Requirements Document

A simple way to accomplish with Capability 1 is, given an input term – that is, a word
sequence – to retrieve all the requirements that contain that term. In order to prevent
undesirable mismatches due to morphological differences between words due to verb in-
flection, or noun features such as number and gender, we apply stemming to both the
indexing term and the requirement words prior to comparing. 6

The above process is rather naive. However, as we have mention in the previous
section, the traditional, significantly more efficient, algorithms for learning classifiers are
obtained throw supervised learning, what cannot be done here.

Notice that we binarily classify the requirements for each indexing term, so that a
single requirement may appear in more than one class.

3.2. Experiment 2: A Simple Way to Find an Appropriate Set Indexing Terms of
the Requirements Document

We ranked the words appearing in the requirements document according to three criteria:
frequency, log-likelihood, and ��� [Manning and Schütze 1999] – one ranked list per cri-
terion. 7 Only the top 30 words were kept in each list. The resulting set was manually
scrutinized to eliminate words not relevant to particular topics (stop words for the domain)
and a final set of 5 was chosen. Over the process of testing, additional terms were being
added by empirical observation, namely non-functional terms, in the spirit of Capability
3, that is, that the stakeholder interferes with the process iteratively. Table 1 shows the
terms used.

5In the experiments we used [Orengo and Huyck 2001]’s stemmer and PreText [Matsubara et al. 2003]
to generate the document representation as bag of words.

6Stemming also provides a unique representation for words of different syntactic categories – e.g., a
noun and a verbal form – which are seen to derive one from the other, such as sell and sale. Alternatively
one could suggest using a lemmatizer instead, which would preserve the distinction between the syntactic
categories.

7We could have also generated lists for bigrams, or trigrams to obtain multiple-word terms, although we
did not do so here.

1703

comunicação automatically generated
pacote automatically generated
pagamento automatically generated
segurança manually added
sistemas externos manually added
viagem automatically generated
parametrização manually added
reserva automatically generated

Table 1. Indexing Terms

3.3. Experiment 3: Directly Clustering the Documents

The idea here is to obtain an adequate set of visions for the requirements document
without first obtaining the indexing terms as we discussed in Capability 2. The reason
for doing this is that it is clearly hard to automatically obtain a good set of indexing
terms. And a bad quality of such initial set compromises the visions found in a sub-
sequent step. On the other hand there are plenty of available unsupervised learning al-
gorithms for text clustering that can be used to directly obtain the sets of visions. We
applied the k-means algorithm [Manning and Schütze 1999] available among the Weka
tools [Witten and Frank 2000]. Each requirement is first converted into a bag-of-words
representation: a high-dimensional vector where each word � is a dimension, and the
coordinate value at that dimension is the number of occurrences of � in the requirement
text. It is important to note that: (1) words are actually stems, what greatly reduces di-
mensionality; (2) all vectors contain exactly the same dimensions, namely all the stems
appearing in any of the requirements; (3) however irrelevant words are excluded from
the dimensions, using a stop list. The stop list contains very common words (i.e. with
high frequency in the texts), typically from closed categories such as articles and preposi-
tions, whose inclusion serves only to confuse the algorithms, since they are not relevant to
take any sensible decision concerning clustering. Following this spirit, additional words
may be added in an interactive process, by the stakeholder, which are irrelevant and very
frequent in the particular domain.

Once the requirements have been converted into vectors, the k-means algorithm
works as follows to obtain a set of

�
clusters. Initially a set of

�
points (vectors) are

randomly chosen as clusters centroids. Then each requirement (the corresponding vector)
is assigned to the cluster whose centroid is the closest to it. Then the centroid of each
cluster is re-evaluated. The process repeats until the clusters converge to a stable partition.

A drawback of this approach is that we have to provide as input the number
�

of
clusters having no clue at all of what could be the desired granularity. Recall that although
a similar such decision has to be made regarding the number of relevant terms that are to
be used when the terms are determined first, in that case we can be guided by looking at

1704

the terms and evaluating their relevance.

3.4. Experiment 4: A More Elaborate Way of Classifying the Requirements

We start with an initial set of indexing terms, which will, at the end, determine the gen-
erated subsets of requirements. For each term � , we generate a list of word contexts, that
tend to appear in the document together with � forming a relevant collocation. We can
think of this list, as defining relevant contexts for the occurrence of � in the requirements
document. The terms with their associated lists compose a hierarchical, two-level index-
ing structure. We are actually interested in the first level of the original terms only. The
second level is intended to help improve precision of categorization by specifying more
specific relevant contexts for the use of the word � .

For each term � we obtain an initial set of collocation candidates as follows. For
each occurrence of � in the document, we extract the sequence of words starting five words
before and ending five words after � – a concordance. Now let ���������
	����� � � � ��� � � � ������	����
be one such concordance. A collocation candidate is either a pair ����������� , where ��� is a
substring of ������� �
	!�� � � � � , or a pair �"�#�#��$%� , where ��$, is a substring of � � � � ���&�'	 ��� .
Actually, the word components in these collocation candidates are converted to their stem.
Each candidate is then evaluated with respect to its relevance in the requirements docu-
ment using the T-score measure and mutual information [Manning and Schütze 1999].

(*)�+ �-,/.!�
0 �21�3)�+ �-,/.5476 $98;:=<?>A@CB 6 $98D:E<?F�@GH) 0 �21�3)�+ �-,/.�.

IKJ)L+ �-,/.!�M��NPO �
) Q)�+ �-,/.
Q)�+ .SR Q) ,/. .

T ��1�3)�+ . , 0 �21�3) ,U. and
0 �21�3)�+ �-,/. are the occurrence frequencies of terms

+
and

, and the of their joint occurrence. Q)�+ . , Q) ,U. and Q)�+ �-,/. are probability estimates
obtained from the requirement document.

Finally, using the stop list, irrelevant words are removed from the candidates con-
sidered relevant. The resulting sequences form the list collocations for the term � , which
is the second level of the hierarchical index structure.

Once the two-level structure is generated we are able to classify requirements as
follows. We insert the requirement in the category for a term � , if the requirement text
matches one of the collocations. The text matches a collocation of the form �7�2�����V� , if
it contains a subsequence of the form �W�YXZ� , where X is a sequence of up to four words.
Collocations involving ��$ are worked out similarly. (These same matching criteria is also
used for counting

0 �21�3)L+ �-,/. above.)

1705

Indexing Term Precision Recall
T���� �

pacote �����
	 ������ �������
pagamento ������� ������ �������

viagem ������� ������ �������
reserva ������� ������� �������
Table 2. Evaluation of Experiment 1

Indexing Term Precision Recall
T���� �

pacote ������� ����	�� �������
pagamento ������ ������� �������

viagem ������� ������� ������	
reserva ������	 ������� �����
�
Table 3. Evaluation of Experiment 4

4. Partial Empirical Evaluation

We first generated a set of indexing terms running the Experiment 2 above. We asked
a computer scientist familiar with software engineering to generate an annotation table
for the document where each line was a requirement and the columns were the indexing
terms. Each cell would be marked yes in case the requirement was judged to be related to
the indexed term, or no, otherwise. This became our gold standard.

Then we ran the simple algorithm of the Experiment 1, obtaining the accuracy
results of Table 2. The figures for precision and recall have been obtained in the standard
ways, as below.

T���� � is their harmonic average. Table 3 presents the results for the more
elaborate experiment 4.

Q �21�� J � J N�� �
��� I! 1�� N 0 �21�3 � J ��1 I 1"� �=�%�ANP�2�21��#�E�L, �21'� � J 1"# 1�$ 0 NW���&%�1 �E1�� I��� I! 1�� N 0 �21�3 � J ��1 I 1"� �=���21'� � J 1"# 1�$ 0 NW���&%�1 �E1�� I

' 1��)(�����
�*� I! 1��ZN 0 ��1�3 � J �21 I 1"�Y�=����NP�2�21�� �E��, �21'� � J 1"# 1�$ 0 NW���&%�1 �E1�� I��� I! 1�� N 0 �21�3 � J ��1 I 1"� �=�+(�P��N2� J (�E1�$ �EN��&%�1 �E1�� I

T,��� � � 	VR Q ��1�� J � J N-� R ' 1��)(���
Q ��1�� J � J N-�/. ' 1��)(���

Unfortunately we did not see improvements in precision as we were expecting in
experiment 4.

1706

5. Conclusions and Future Work
We tackle a hard problem of applied information retrieval using natural language process-
ing methods. Traditional supervised algorithms are not applicable. In this initial work we
tried a few approaches which provide a baseline for accuracy results. Some experiments
have been quantitatively evaluated.

With respect to the clustering algorithm we could not find a sensible way to evalu-
ate it. A rather serious problem is that the usual clustering algorithms generate a partition,
i.e., non-overlapping clusters. That is the case of the k-means and all other algorithms for
clustering provided at Weka.

When trying to access the clusters and tell what they were about, we could not
make sense of the clusters as referring to reasonable topics of interest, that is, we were
not successful in finding reasonable index terms. We believe this may be, at least partly,
due to the algorithm being non-overlapping, while the subsets of requirements are largely
overlapping w.r.t. to reasonable sets of indexing terms.

A main direction for future work is to look for non-supervised learning and non-
standard techniques applicable to our problem.

References
Chen, K., Zhang, W., Zhao, H., and Mei, H. (2005). An approach to constructing feature

models based on requirements clustering. In Proceedings of the 13th IEEE Interna-
tional Conference on Requirements Engineering (RE’05), pages 31–40, Paris, France.

Hsia, P. and Gupta, A. (1992). Incremental delivery using abstract data types and require-
ments clustering. In Proceedings of the Second International Conference on Systems
Integration, pages 137–150, Morristown, NJ, USA.

Manning, C. D. and Schütze, H. (1999). Foundations of statistical natural language
processing. MIT Press, Cambridge, MA, USA.

Matsubara, E. T., Martins, C. A., and Monard, M. C. (2003). Pretext: Uma ferramenta
para pré-processamento de textos utilizando a abordagem bag-of-words. Technical
Report 209, ICMC-USP, São Carlos, Brazil.

Orengo, V. M. and Huyck, C. R. (2001). A stemming algorithm for the portuguese lan-
guage. In 8th International Symposium on String Processing and Information Retrieval
(SPIRE’2001), pages 186–193, Laguna de San Rafael, Chile.

Palmer, J. D. and Liang, Y. (1992). Indexing and clustering of software requirements
specifications. Information and Decision Technologies, 18(4):283–299.

Quatrani, T. (1998). Visual Modeling with Rational Rose and UML. Addison-Wesley,
Reading, MA, USA.

Sebastiani, F. (March, 2002). Machine learning in automated text categorization. ACM
Computing Surveys, 34(1).

1707

Sommerville, I. (2001). Software Engineering. Addison-Wesley, Boston, MA, USA.

Witten, I. H. and Frank, E. (2000). Data mining: practical machine learning tools and
techniques with java implementations. Morgan Kaufmann, San Francisco, CA, USA.

1708

